RESUMO
BACKGROUND: The existence of breast cancer stem cells (BCSCs) causes tumor relapses, metastasis and resistance to conventional therapy in breast cancer. NDR1 kinase, a component of the Hippo pathway, plays important roles in multiple biological processes. However, its role in cancer stem cells has not been explored. The purpose of this study was to investigate the roles of NDR1 in modulating BCSCs. METHODS: The apoptosis was detected by Annexin V/Propidium Iodide staining and analyzed by flow cytometry. BCSCs were detected by CD24/44 or ALDEFLUOR staining and analyzed by flow cytometry. The proliferation ability of BCSCs was evaluated by sphere formation assay. The expression of interested proteins was detected by western blot analysis. The expression of HES-1 and c-MYC was detected by real-time PCR. Notch1 signaling activation was detected by luciferase reporter assay. Protein interaction was evaluated by immunoprecipitation. Protein degradation was evaluated by ubiquitination analysis. The clinical relevance of NDR1 was analyzed by Kaplan-Meier Plotter. RESULTS: NDR1 regulates apoptosis and drug resistance in breast cancer cells. The upregulation of NDR1 increases CD24low/CD44high or ALDEFLUORhigh population and sphere-forming ability in SUM149 and MCF-7 cells, while downregulation of NDR1 induces opposite effects. NDR1 increased the expression of the Notch1 intracellular domain (NICD) and activated the transcription of its downstream target (HES-1 and c-MYC). Critically, both suppression of Notch pathway activation by DAPT treatment or downregulation of Notch1 expression by shRNA reverses NDR1 enhanced BCSC properties. Mechanically, NDR1 interactes with both NICD or Fbw7 in a kinase activity-independent manner. NDR1 reduces the proteolytic turnover of NICD by competing with Fbw7 for NICD binding, thereby leading to Notch pathway activation. Furthermore, NDR1 might function as a hub to modulate IL-6, TNF-α or Wnt3a induced activation of Notch1 signaling pathway and enrichment of breast cancer stem cells. Moreover, we find that the elevation of NDR1 expression predictes poor survival (OS, RFS, DMFS and PPS) in breast cancer. CONCLUSION: Our study revealed a novel function of NDR1 in regulating BCSC properties by activating the Notch pathway. These data might provide a potential strategy for eradicating BCSC to overcome tumor relapses, metastasis and drug resistance.
Assuntos
Fenômenos Biológicos , Neoplasias da Mama , Proteínas Serina-Treonina Quinases , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptor Notch1/genética , Transdução de SinaisRESUMO
BACKGROUND: Lymphoma is one of the most common hematologic malignancy. Drug resistance is the main obstacle faced in lymphoma treatment. Cancer stem cells are considered as the source of tumor recurrence, metastasis and drug resistance. The ß-Asarone, a low-toxicity compound from the traditional medical herb Acorus calamus, has been shown to act as an anti-cancer reagent in various cancer types. However, the anti-cancer activities of ß-Asarone in lymphoma have not been shown. METHODS: Cell counting assay was used to evaluate Raji cell proliferation. CCK8 assay was used to evaluate the cell viability. Annexin-V/PI staining and flow cytometry analysis were used to evaluate apoptosis. ALDEFLUOR assay was used to evaluate the stem-like population. Luciferase reporter assay was used to examine the activation of NF-κB signaling. Western blot and polymerase chain reaction (PCR) were used to determine the expression of interested genes. RESULTS: We showed that ß-Asarone inhibited proliferation and induced apoptosis in Raji lymphoma cells in a dose-dependent manner. Additionally, ß-Asarone functioned as a sensitizer of doxorubicin and resulted in synergistic effects on inhibition of proliferation and induction of apoptosis when combined with doxorubicin treatment. Interestingly, we found that ß-Asarone also reduced the stem-like population of Raji lymphoma cells in a dose-dependent manner, and suppressed the expression of c-Myc and Bmi1. Importantly, ß-Asarone abolished doxorubicin-induced enrichment of the stem-like population. In the mechanism study, we revealed that ß-Asarone suppressed not only basal NF-κB activity but also Tumor necrosis factor α (TNF-α) induced NF-κB activity. Moreover, blocking NF-κB signaling inactivation was critical for ß-Asarone induced apoptosis and inhibition of proliferation, but not for the effect on ß-Asarone reduced stem-like population. In fact, ß-Asarone suppressed stem-like population by destabilizing Bmi1 via a proteasome-mediated mechanism. CONCLUSIONS: Our data suggested the application of ß-Asarone to lower the toxic effect of doxorubicin and increase the sensitivity of doxorubicin in clinical treatment. More importantly, our data revealed a novel role of ß-Asarone which could be used to eliminate stem-like population in lymphoma, implying that ß-Asarone might reduce relapse and drug resistance.
RESUMO
The signalling adaptor p62 is frequently overexpressed in numerous cancer types. Here, we found that p62 expression was elevated in metastatic breast cancer and its overexpression correlated with reduced metastasis- and relapse-free survival times. Analysis of p62 expression in breast cancer cell lines demonstrated that high p62 expression was associated with the invasive phenotypes of breast cancer. Indeed, silencing p62 expression attenuated the invasive phenotypes of highly metastatic cells, whereas overexpressing p62 promoted the invasion of non-metastatic cells in in vitro microfluidic model. Moreover, MDA-MB-231 cells with p62 depletion which were grown in a three-dimensional culture system exhibited a loss of invasive protrusions. Consistently, genetic ablation of p62 suppressed breast cancer metastasis in both zebrafish embryo and immunodeficient mouse models, as well as decreased tumourigenicity in vivo. To explore the molecular mechanism by which p62 promotes breast cancer invasion, we performed a co-immunoprecipitation-mass spectrometry analysis and revealed that p62 interacted with vimentin, which mediated the function of p62 in promoting breast cancer invasion. Vimentin protein expression was downregulated upon p62 suppression and upregulated with p62 overexpression in breast cancer cells. Linear regression analysis of clinical breast cancer specimens showed a positive correlation between p62 and vimentin protein expression. Together, our findings provide strong evidence that p62 functions as a tumour metastasis promoter by binding vimentin and promoting its expression. This finding might help to develop novel molecular therapeutic strategies for breast cancer metastasis treatment.
Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Metástase Neoplásica/patologia , Proteína Sequestossoma-1/genética , Vimentina/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Regulação para Baixo/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/patologia , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Regulação para Cima/fisiologia , Peixe-ZebraRESUMO
BACKGROUND/AIMS: Resistance of leukemia stem cells (LSCs) to chemotherapy in patients with acute myeloid leukemia (AML) causes relapse of disease. Hedgehog (Hh) signaling plays a critical role in the maintenance and differentiation of cancer stem cells. Yet its role in AML remains controversial. The purpose of the present study is to investigate the role of GLI1, the transcriptional activator of Hh signaling, in AML progenitor cells and to explore the anti-AML effects of GLI small-molecule inhibitor GANT61. METHODS: The expression of GLI1 mRNA and protein were examined in AML progenitor cells and normal cells. The proliferation, colony formation, apoptosis and differentiation of AML progenitor cells were also analyzed in the presence of GANT61. RESULTS: Kasumi-1 and KG1a cells, containing more CD34+ cells, expressed higher level of GLI1 compared to U937 and NB4 cells with fewer CD34+ cells. Consistently, a positive correlation between the protein levels of GLI1 and CD34 was validated in the bone marrow mononuclear cells (BMMC) of AML patients tested. GANT61 inhibited the proliferation and colony formation in AML cell lines. Importantly, GANT61 induced apoptosis in CD34+ enriched Kasumi-1 and KG1a cells, whereas it induced differentiation in U937 and NB4 cells. Furthermore, GANT61 enhanced the cytotoxicity of cytarabine (Ara-c) in primary CD34+ AML cells, indicating that inhibition of GLI1 could be a promising strategy to enhance chemosensitivity. CONCLUSIONS: The present findings suggested that Hh signaling was activated in AML progenitor cells. GLI1 acted as a potential target for AML therapy.
Assuntos
Antígenos CD34/metabolismo , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/metabolismo , Proteína GLI1 em Dedos de Zinco/antagonistas & inibidores , Proteína GLI1 em Dedos de Zinco/metabolismo , Adolescente , Adulto , Idoso , Apoptose/efeitos dos fármacos , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/metabolismo , Masculino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/citologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Adulto Jovem , Proteína GLI1 em Dedos de Zinco/genéticaRESUMO
In this study, tri-functional immunofluorescent probes (Ce6-IgG-QDs) based on covalent combinations of quantum dots (QDs), immunoglobulin G (IgG) and chlorin e6 (Ce6) were developed and their photodynamic ability to induce the death of cancer cells was demonstrated. Strategically, one type of second-generation photosensitizer, Ce6, was first coupled with anti-IgG antibody using the EDC/NHS cross-linking method to construct the photosensitive immunoconjugate Ce6-IgG. Then, a complex of Ce6-IgG-QDs immunofluorescent probes was obtained in succession by covalently coupling Ce6-IgG to water soluble CdTe QDs. The as-manufactured Ce6-IgG-QDs maintained the bio-activities of both the antigen-antibody-based tumour targeting effects of IgG and the photodynamic-related anticancer activities of Ce6. By way of polyclonal antibody interaction with rabbit anti-human epidermal growth factor receptor (anti-EGFR antibody, N-terminus), Ce6-IgG-QDs were labelled indirectly onto the surface of human hepatocarcinoma (HepG2) cells in cell recognition and killing experiments. The results indicated that the Ce6-IgG-QDs probes have excellent tumour cell selectivity and higher photosensitivity in photodynamic therapy (PDT) compared with Ce6 alone, due to their antibody-based specific recognition and location of HepG2 cells and the photodynamic effects of Ce6 killed cells based on efficient fluorescence resonance energy transfer between QDs and Ce6. Copyright © 2015 John Wiley & Sons, Ltd.
Assuntos
Antineoplásicos/farmacologia , Corantes Fluorescentes/farmacologia , Imunoglobulina G/química , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Pontos Quânticos , Antineoplásicos/síntese química , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Clorofilídeos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Células Hep G2 , Humanos , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Porfirinas/química , Relação Estrutura-AtividadeRESUMO
The presence of large segmental defects of the diaphyseal bone is challenging for orthopedic surgeons. Free vascularized fibular grafting (FVFG) is considered to be a reliable reconstructive procedure. Stress fractures are a common complication following this surgery, and hypertrophy is the main physiological change of the grafted fibula. The exact mechanism of hypertrophy is not completely known. To the best of our knowledge, no studies have examined the possible relationship between stress fractures and hypertrophy. We herein report three cases of patients underwent FVFG. Two of them developed stress fractures and significant hypertrophy, while the remaining patient developed neither stress fractures nor significant hypertrophy. This phenomenon indicates that a relationship may exist between stress fractures and hypertrophy of the grafted fibula, specifically, that the presence of a stress fracture may initiate the process of hypertrophy.
Assuntos
Fíbula/transplante , Fraturas de Estresse/patologia , Tíbia/cirurgia , Fraturas da Tíbia/cirurgia , Adulto , Feminino , Fíbula/patologia , Humanos , Hipertrofia , Masculino , Pessoa de Meia-IdadeRESUMO
BACKGROUND/AIM: P21, a multifunctional cell cycle-regulatory molecule, regulates apoptotic cell death. In this study we examined the effect of altered p21 expression on the sensitivity of acute myeloid leukemia cells in response to HDAC inhibitor SAHA treatment and investigated the underlying mechanism. METHODS: Stably transfected HL60 cell lines were established in RPMI-1640 with supplementation of G-418. Cell viability was measured by MTT assay. Western blot was applied to assess the protein expression levels of target genes. Cell apoptosis was monitored by AnnexinV-PE/7AAD assay. RESULTS: We showed HL60 cells that that didn't up-regulate p21 expression were more sensitive to SAHA-mediated apoptosis than NB4 and U937 cells that had increased p21 level. Enforced expression of p21 in HL60 cells reduced sensitivity to SAHA and blocked TRAIL-mediated apoptosis. Conversely, p21 silencing in NB4 cells enhanced SAHA-mediated apoptosis and lethality. Finally, we found that combined treatment with SAHA and rapamycin down-regulated p21 and enhanced apoptosis in AML cells. CONCLUSION: We conclude that up-regulated p21 expression mediates resistance to SAHA via inhibition of TRAIL apoptotic pathway. P21 may serve as a candidate biomarker to predict responsiveness or resistance to SAHA-based therapy in AML patients. In addition, rapamycin may be an effective agent to override p21-mediated resistance to SAHA in AML patients.
Assuntos
Apoptose/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Leucemia Mieloide Aguda/patologia , Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Regulação para Cima , Sequência de Bases , Western Blotting , Caspase 8/metabolismo , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Células HL-60 , Humanos , Leucemia Mieloide Aguda/metabolismo , Interferência de RNA , Sirolimo/farmacologiaRESUMO
In order to calculate the ground movement induced by displacement piles driven into horizontal layered strata, an axisymmetric model was built and then the vertical and horizontal ground movement functions were deduced using stochastic medium theory. Results show that the vertical ground movement obeys normal distribution function, while the horizontal ground movement is an exponential function. Utilizing field measured data, parameters of these functions can be obtained by back analysis, and an example was employed to verify this model. Result shows that stochastic medium theory is suitable for calculating the ground movement in pile driving, and there is no need to consider the constitutive model of soil or contact between pile and soil. This method is applicable in practice.
Assuntos
Modelos Teóricos , Processos EstocásticosRESUMO
Lung cancer is the leading cause of cancer-related death. Cancer immune evasion is a key barrier in the treatment of lung cancer and the development of effective anticancer therapeutics. Long-chain Acyl-CoA dehydrogenase (ACADL), a key enzyme that regulates ß-oxidation of long-chain fatty acyl-CoAs, has been found to act as a tumor suppressor in cancers. However, the role of ACADL in lung adenocarcinoma (LUAD) has not been explored. In the current study, we find that ACADL functions as a tumor suppressor in LUAD to inhibit proliferation and enhanced chemotherapeutic drug-induced apoptosis. Interestingly, ACADL prevents tumor immune evasion by suppressing PD-L1 expression in LUAD. ACADL is critical for Hippo/YAP pathway-mediated PD-L1 regulation. Moreover, YAP activation is essential for ACADL suppression of PD-L1 transcription. In addition, ACADL increases the protein stability and kinase activity of LATS kinase to inhibit YAP activation and PD-L1 transcription. Furthermore, we show that ACADL expression is positively correlated with a better OS and FP in LUAD. Our data reveals that ACADL could be a promising target for regulating Hippo/YAP pathway to prevent tumor immune evasion in LUAD.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Acil-CoA Desidrogenase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Antígeno B7-H1/metabolismo , Evasão da Resposta Imune , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAPRESUMO
OBJECTIVE: This study aimed to investigate the predictive factors as well as the time and age course of recurrence/persistence in a large cohort of postoperative patients with papillary thyroid carcinoma (PTC) based on the long-term ultrasonography (US) follow-up data. METHODS: Between January 2007 and December 2016, 3106 patients underwent surgery for PTC and at least two postoperative US follow-up examination over more than three years. Tumor recurrence/persistence was confirmed based on the follow-up US data and histopathological results. Univariate and multivariate analyses were performed to evaluate the predictive factors of tumor recurrence/persistence. Kaplan-Meier survival analysis was used to evaluate the recurrence-/persistence-free survival curve based on the US results. RESULTS: A total of 321(10.3%) patients developed tumor recurrence/persistence during 54.3 months of mean follow-up (range 36-135 months), including 268(83.5%) cases of lymph node recurrence/persistence, 37 (11.5%) cases of non-lymph node recurrence/persistence, and 16(5%) cases of both types. Recurrence/persistence was observed using US examination at a mean interval of 23.6 ± 21.6 months (range 1-135 months) after surgery and peak incidence was observed 1-2 years after initial treatment. Younger (20-30 years old) and older (70-80 years old) patients had a higher proportion of tumor recurrence/persistence. Multifocality, advanced T and advanced N stages were independent risk factors of tumor recurrence/persistence. CONCLUSION: Tumor recurrence/persistence of PTC usually occurs during the early postoperative period. For patients with multifocal cancer, advanced T and N stage, the US surveillance examination should be cautiously performed, especially in younger and older patients.
Assuntos
Carcinoma Papilar , Neoplasias da Glândula Tireoide , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Papilar/diagnóstico por imagem , Carcinoma Papilar/cirurgia , Seguimentos , Humanos , Recidiva Local de Neoplasia/epidemiologia , Estudos Retrospectivos , Câncer Papilífero da Tireoide/diagnóstico por imagem , Câncer Papilífero da Tireoide/cirurgia , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/cirurgia , Tireoidectomia , Ultrassonografia , Adulto JovemRESUMO
Small cell lung cancer (SCLC) is one of the most malignant types of lung cancer. Cancer stem cell (CSC) and tumor immune evasion are critical for the development of SCLC. We previously reported that NDR1 enhances breast CSC properties. NDR1 might also have a role in the regulation of immune responses. In the current study, we explore the function of NDR1 in the control of CSC properties and evasion of phagocytosis in SCLC. We find that NDR1 enhances the enrichment of the ALDEFLUORhigh and CD133high population, and promotes sphere formation in SCLC cells. Additionally, NDR1 upregulates CD47 expression to enhance evasion of phagocytosis in SCLC. Furthermore, the effects of NDR1 enhanced CD47 expression and evasion of phagocytosis are more prominent in CSC than in non-CSC. Importantly, NDR1 promotes ASCL1 expression to enhance NDR1-promoted CSC properties and evasion of phagocytosis in SCLC cells. Mechanically, NDR1 enhances protein stability and the nuclear location of ASCL1 to activate the transcription of CD47 in SCLC. Finally, CD47-blocking antibody can be used to target NDR1 enhanced CSC properties and evasion of phagocytosis by suppressing EGFR activation in SCLC. In summary, our data indicate that NDR1 could be a critical factor for modulating CSC properties and phagocytosis in SCLC.
Assuntos
Neoplasias Pulmonares , Proteínas Serina-Treonina Quinases/metabolismo , Carcinoma de Pequenas Células do Pulmão , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Antígeno CD47/genética , Antígeno CD47/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Células-Tronco Neoplásicas/patologia , Fagocitose , Estabilidade Proteica , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologiaRESUMO
BACKGROUND: Acute myeloid leukemia (AML) is an immunophenotypically heterogeneous malignant disease, in which CD34 positivity is associated with poor prognosis. CD34+ AML cells are 10-15-fold more resistant to daunorubicin (DNR) than CD34- AML cells. Curcumin is a major component of turmeric that has shown cytotoxic activity in multiple cancers; however, its anti-cancer activity has not been well studied in DNR-insensitive CD34+ AML cells. The aim of this study was to therefore to explore curcumin-induced cytotoxicity in DNR-insensitive CD34+ AML cell lines (KG1a, Kasumi-1), DNR-sensitive U937 AML cells, and primary CD34+ AML bone-marrow-derived cells. METHODS: Primary human CD34+ cells were isolated from peripheral blood mononuclear cells or bone marrow mononuclear cells using a CD34 MicroBead kit. The growth inhibitory effects of curcumin were evaluated by MTT and colony-formation assays. Cell cycle distribution was examined by propidium iodide (PI) assay. Apoptosis was analyzed by Wright-Giemsa, Hoechst 33342 and Annexin-V/PI staining assays. The change in mitochondrial membrane potential (MMP) was examined by JC-1 staining and flow cytometry. Expression of apoptosis-related proteins was determined by reverse transcription-polymerase chain reaction and Western blotting. Short interfering RNA (siRNA) against Bcl-2 was used in CD34+ KG1a and Kasumi-1 cells incubated with/without DNR. RESULTS: Curcumin inhibited proliferation and induced apoptosis and G1/S arrest in both DNR-insensitive KG1a, Kasumi-1 and DNR-sensitive U937 cells. Curcumin-induced apoptosis was associated with reduced expression of both Bcl-2 mRNA and protein, subsequent loss of MMP, and activation of caspase-3 followed by PARP degradation. Curcumin synergistically enhanced the cytotoxic effect of DNR in DNR-insensitive KG1a and Kasumi-1 cells, consistent with decreased Bcl-2 expression. Accordingly, siRNA against Bcl-2 increased the susceptibility of KG1a and Kasumi-1 cells to DNR-induced apoptosis. More importantly, curcumin suppressed Bcl-2 expression, selectively inhibited proliferation and synergistically enhanced the cytotoxicity of DNR in primary CD34+ AML cells, while showing limited lethality in normal CD34+ hematopoietic progenitors. CONCLUSION: Curcumin down-regulates Bcl-2 and induces apoptosis in DNR-insensitive CD34+ AML cell lines and primary CD34+ AML cells.
Assuntos
Antígenos CD34/metabolismo , Apoptose/efeitos dos fármacos , Curcumina/farmacologia , Daunorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mieloide Aguda/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Adolescente , Adulto , Idoso , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Fase G1/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/genética , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Pessoa de Meia-Idade , Poli(ADP-Ribose) Polimerases/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Fase S/efeitos dos fármacosRESUMO
BACKGROUND: There is increasing evidence that cancers contain their own stem-like cells, and particular attention has been paid to one subset of cancer-stem cells termed side population (SP). Stem cells under normal physical conditions are tightly controlled by their microenvironment, however, the regulatory role of the microenvironment surrounding cancer stem cells is not well characterized yet. In this study we found that the phenotype of SP can be "generated" by macrophage-like cells under conditioned culture. Furthermore the gene regulation pathway involved in cellular reprogramming process was investigated. METHODS: The selection and identification of SP in 50 CNE-2 single cell clones were performed by flow cytometry. The transwell assay and immunofluorescence staining were used to measure migration and cancer stem cell characters of non-SP single clone cells cultured with conditioned medium respectively. The subtraction suppression hybridization (SSH) technique and northern blotting analysis was applied to explore the pluripotency-associated genes under a unique epigenetic sub-microenvironment. RESULTS: Among 50 clones, only one did not possess SP subpopulation while others did. The non-SP cells induced by macrophage-like cells showed more aggressive characters, which increased cell migration compared with the control cells and showed some fraction of SP phenotype. These cells expressed distinguished level of pluripotency-associated genes such as ADP-ribosylation factor-like 6 interacting protein (ARMER), poly (rC) binding protein 1 (PCBP1) and pyruvate dehydrogenase E1-beta subunit (PDHB) when subjected to the environment. CONCLUSION: To our knowledge, this is the first study to demonstrate that non-SP single-clone cells can be induced to generate a SP phenotype when they are cultured with conditioned medium of macrophage-like cells, which is associated with the reactivation of pluripotency-associated genes.
Assuntos
Carcinoma/genética , Carcinoma/patologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Células-Tronco Neoplásicas/citologia , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Movimento Celular , Separação Celular , Meios de Cultivo Condicionados/metabolismo , Epigênese Genética , Citometria de Fluxo/métodos , Humanos , Macrófagos/citologia , Microscopia de Fluorescência/métodos , Transplante de Neoplasias , Hibridização de Ácido NucleicoRESUMO
An ultra-sensitive T 2-weighted MR imaging contrast agent was prepared based on Fe3O4 nanoparticles and Gd3+ ions (Fe3O4@Gd). Amino modified Fe3O4 nanoparticles were conjugated to diethylenetriamine pentaacetic acid, and finally coordinated with Gd3+ ions. The nanoparticles had a uniform morphology with a size of 100 nm and a Gd/Fe mass ratio of 1/110. The r 2 (transverse relaxivity) of the Fe3O4 nanoparticles increased from 131.89 mM-1 s-1 to 202.06 mM-1 s-1 after coordination with Gd3+ ions. MR measurements showed that the aqueous dispersion of Fe3O4@Gd nanoparticles had an obvious concentration-dependent negative contrast enhancement. Hepatoma cells were selected to test the cytotoxicity and MR imaging effect. The application of Fe3O4@Gd nanoparticles as contrast agents was also exploited in vivo for T 2-weighted MR imaging of rat livers. All the results showed the effectiveness of the nanoparticles in MR diagnosis.
RESUMO
Multifunctional nanoclusters based on Fe3O4 nanoparticles for magnetic resonance imaging (MRI) and drug delivery are reported here. At first, oleic acid (OA)-coated Fe3O4 nanoparticles were prepared. Then block copolymer Pluronic F127 or folic acid (FA) conjugated-Pluronic F127 was used to modify the hydrophobic nanoparticles to become hydrophilic Fe3O4@F127 nanoclusters via facile ultrasonic treatment. During this process, drug molecules can also be introduced into the nanoclusters and therefore the targeted drug delivery system was formed. Next, we verified the feasibility of the nanoclusters as drug delivery vehicles and magnetic contrast agents. The nanoclusters have an average size of 200 nm and remained stable in water for long periods. Folic acid-modified nanoclusters showed an enhanced intracellular uptake into HepG2 cells by using both cellular iron amount analysis and flow cytometry analysis. Besides, Fe3O4@F127@FA nanoclusters showed good compatibility in the tested concentration range and good sensitivity in T 2-weighted MRI. The magnetic nanoclusters combined with drug delivery properties have greatly increased the significance in the diagnosis and therapy of diseases, which are suitable for systematical administration of hydrophobic drugs and simultaneously MRI diagnosis.
RESUMO
BACKGROUND: The mitotic Aurora-A kinase exerts crucial functions in maintaining mitotic fidelity. As a bona fide oncoprotein, Aurora-A aberrant overexpression leads to oncogenic transformation. Yet, the mechanisms by which Aurora-A enhances cancer cell survival remain to be elucidated. RESULTS: Here, we found that Aurora-A overexpression was closely correlated with clinic stage and lymph node metastasis in tongue carcinoma. Aurora-A inhibitory VX-680 suppressed proliferation, induced apoptosis and markedly reduced migration in cancer cells. We further showed that insulin-like growth factor-1, a PI3K physiological activator, reversed VX-680-decreased cell survival and motility. Conversely, wortmannin, a PI3K inhibitor, combined with VX-680 showed a synergistic effect on inducing apoptosis and suppressing migration. In addition, Aurora-A inhibition suppressed Akt activation, and VX-680-induced apoptosis was attenuated by Myr-Akt overexpression, revealing a cross-talk between Aurora-A and PI3K pathway interacting at Akt activation. Significantly, we showed that suppression of Aurora-A decreased phosphorylated Akt and was associated with increased IkappaBalpha expression. By contrast, Aurora-A overexpression upregulated Akt activity and downregulated IkappaBalpha, these changes were accompanied by nuclear translocation of nuclear factor-kappaB and increased expression of its target gene Bcl-xL. Lastly, Aurora-A overexpression induced IkappaBalpha reduction was abrogated by suppression of Akt either chemically or genetically. CONCLUSION: Taken together, our data established that Aurora-A, via activating Akt, stimulated nuclear factor-kappaB signaling pathway to promote cancer cell survival, and promised a novel combined chemotherapy targeting both Aurora-A and PI3K in cancer treatment.
Assuntos
Regulação para Baixo/genética , Proteínas I-kappa B/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Língua/patologia , Apoptose/efeitos dos fármacos , Aurora Quinases , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Metástase Linfática/patologia , Inibidor de NF-kappaB alfa , Estadiamento de Neoplasias , Fosforilação/efeitos dos fármacos , Piperazinas/farmacologia , Ligação Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Língua/enzimologia , Fator de Transcrição RelA/metabolismoRESUMO
Lymphoma is one of the most curable types of cancer. However, drug resistance is the main challenge faced in lymphoma treatment. Peroxisomal acyl-CoA oxidase 1 (ACOX1) is the rate-limiting enzyme in fatty acid ß-oxidation. Deregulation of ACOX1 has been linked to peroxisomal disorders and carcinogenesis in the liver. Currently, there is no information about the function of ACOX1 in lymphoma. In this study, we found that upregulation of ACOX1 promoted proliferation in lymphoma cells, while downregulation of ACOX1 inhibited proliferation and induced apoptosis. Additionally, overexpression of ACOX1 increased resistance to doxorubicin, while suppression of ACOX1 expression markedly potentiated doxorubicin-induced apoptosis. Interestingly, downregulation of ACOX1 promoted mitochondrial location of Bad, reduced mitochondrial membrane potential and provoked apoptosis by activating caspase-9 and caspase-3 related apoptotic pathway. Overexpression of ACOX1 alleviated doxorubicin-induced activation of caspase-9 and caspase-3 and decrease of mitochondrial membrane potential. Importantly, downregulation of ACOX1 increased p73, but not p53, expression. p73 expression was critical for apoptosis induction induced by ACOX1 downregulation. Also, overexpression of ACOX1 significantly reduced stability of p73 protein thereby reducing p73 expression. Thus, our study indicated that suppression of ACOX1 could be a novel and effective approach for treatment of lymphoma. [BMB Reports 2019; 52(9): 566-571].
Assuntos
Acil-CoA Oxidase/metabolismo , Doxorrubicina/farmacologia , Linfoma/metabolismo , Proteína Tumoral p73/metabolismo , Acil-CoA Oxidase/genética , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Western Blotting , Caspase 3/metabolismo , Caspase 9/metabolismo , Células HEK293 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteína Tumoral p73/genéticaRESUMO
The facile fabrication of multifunctional nanocomposites (Fe3O4/HBC@F127) consisting of superparamagnetic Fe3O4 nanoparticles and fluorescent organic hexa-peri-hexabenzocoronene (HBC) molecules incorporated in block copolymer diacylphospholipid-polyethyleneglycol F127 have been demonstrated for dual mode imaging (fluorescent/MR) and drug delivery. The obtained nanocomposites were water-dispersible, stable and biocompatible, as confirmed by dynamic light scattering (DLS) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Relativity measurements showed a T 2 relaxivity (r 2) of 214.61 mM-1 s-1, which may be used as T 2-weighted MR imaging agents. In vitro imaging studies indicated that the nanocomposites had good MR and fluorescence imaging effects with low cytotoxicity. Besides, the developed nanocomposites could also be applied as drug delivery vehicles. Doxorubicin (DOX) loaded Fe3O4/HBC@F127 nanocomposites significantly inhibited the growth of human hepatoma cells (HepG2). These findings suggested that the facile synthesized multifunctional nanocomposites may be used as a platform for dual mode imaging (both MR and fluorescence) and drug delivery.
RESUMO
BACKGROUND: LBP is one of the most common symptoms with high prevalence throughout the world. Conflicting conclusions exist in RCTs on cupping for LBP. OBJECTIVE: To assess the effects and safety of cupping for the patients with LBP. METHODS: Pubmed, Cochrane Library databases, and Embase database were electronically researched. RCTs reporting the cupping for the patients with LBP were included. The meta-analysis was conducted using Review Manager software (version 5.3, Nordic Cochrane Centre). The primary outcome was VAS scores. The secondary outcomes included ODI scores, MPPI scores and complications. RESULTS: Six RCTs were included in this synthesized analysis. The results showed that cupping therapy was superior to the control management with respect to VAS scores (SMD: -0.73, [95% CI: -1.42 to -0.04]; P= 0.04), and ODI scores (SMD: -3.64, [95% CI: -5.85 to -1.42]; P= 0.001). There was no statistical significant difference as regard to MPPI scores. No serious adverse event was reported in the included studies. CONCLUSIONS: Cupping therapy can significantly decrease the VAS scores and ODI scores for patients with LBP compared to the control management. High heterogeneity and risk of bias existing in studies limit the authenticity of the findings.