Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell Mol Life Sci ; 81(1): 162, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568213

RESUMO

Spatiotemporal-controlled second messengers alter molecular interactions of central signaling nodes for ensuring physiological signal transmission. One prototypical second messenger molecule which modulates kinase signal transmission is the cyclic-adenosine monophosphate (cAMP). The main proteinogenic cellular effectors of cAMP are compartmentalized protein kinase A (PKA) complexes. Their cell-type specific compositions precisely coordinate substrate phosphorylation and proper signal propagation which is indispensable for numerous cell-type specific functions. Here we present evidence that TAF15, which is implicated in the etiology of amyotrophic lateral sclerosis, represents a novel nuclear PKA substrate. In cross-linking and immunoprecipitation experiments (iCLIP) we showed that TAF15 phosphorylation alters the binding to target transcripts related to mRNA maturation, splicing and protein-binding related functions. TAF15 appears to be one of multiple PKA substrates that undergo RNA-binding dynamics upon phosphorylation. We observed that the activation of the cAMP-PKA signaling axis caused a change in the composition of a collection of RNA species that interact with TAF15. This observation appears to be a broader principle in the regulation of molecular interactions, as we identified a significant enrichment of RNA-binding proteins within endogenous PKA complexes. We assume that phosphorylation of RNA-binding domains adds another layer of regulation to binary protein-RNAs interactions with consequences to RNA features including binding specificities, localization, abundance and composition.


Assuntos
Esclerose Lateral Amiotrófica , Fatores Associados à Proteína de Ligação a TATA , Humanos , Proteínas Quinases Dependentes de AMP Cíclico , Fosforilação , AMP Cíclico , RNA
2.
Proc Natl Acad Sci U S A ; 117(49): 31105-31113, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229534

RESUMO

Kinase-targeted therapies have the potential to improve the survival of patients with cancer. However, the cancer-specific spectrum of kinase alterations exhibits distinct functional properties and requires mutation-oriented drug treatments. Besides post-translational modifications and diverse intermolecular interactions of kinases, it is the distinct disease mutation which reshapes full-length kinase conformations, affecting their activity. Oncokinase mutation profiles differ between cancer types, as it was shown for BRAF in melanoma and non-small-cell lung cancers. Here, we present the target-oriented application of a kinase conformation (KinCon) reporter platform for live-cell measurements of autoinhibitory kinase activity states. The bioluminescence-based KinCon biosensor allows the tracking of conformation dynamics of full-length kinases in intact cells and real time. We show that the most frequent BRAF cancer mutations affect kinase conformations and thus the engagement and efficacy of V600E-specific BRAF inhibitors (BRAFi). We illustrate that the patient mutation harboring KinCon reporters display differences in the effectiveness of the three clinically approved BRAFi vemurafenib, encorafenib, and dabrafenib and the preclinical paradox breaker PLX8394. We confirmed KinCon-based drug efficacy predictions for BRAF mutations other than V600E in proliferation assays using patient-derived lung cancer cell lines and by analyzing downstream kinase signaling. The systematic implementation of such conformation reporters will allow to accelerate the decision process for the mutation-oriented RAF-kinase cancer therapy. Moreover, we illustrate that the presented kinase reporter concept can be extended to other kinases which harbor patient mutations. Overall, KinCon profiling provides additional mechanistic insights into full-length kinase functions by reporting protein-protein interaction (PPI)-dependent, mutation-specific, and drug-driven changes of kinase activity conformations.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Conformação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Células A549 , Carbamatos/química , Carbamatos/farmacologia , Compostos Heterocíclicos com 2 Anéis/farmacologia , Humanos , Imidazóis/química , Imidazóis/farmacologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação/efeitos dos fármacos , Oximas/química , Oximas/farmacologia , Fosfotransferases/antagonistas & inibidores , Fosfotransferases/ultraestrutura , Inibidores de Proteínas Quinases/química , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/genética , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/ultraestrutura , Sulfonamidas/química , Sulfonamidas/farmacologia , Vemurafenib/química , Vemurafenib/farmacologia
3.
Elife ; 132024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088265

RESUMO

Protein kinases act as central molecular switches in the control of cellular functions. Alterations in the regulation and function of protein kinases may provoke diseases including cancer. In this study we investigate the conformational states of such disease-associated kinases using the high sensitivity of the kinase conformation (KinCon) reporter system. We first track BRAF kinase activity conformational changes upon melanoma drug binding. Second, we also use the KinCon reporter technology to examine the impact of regulatory protein interactions on LKB1 kinase tumor suppressor functions. Third, we explore the conformational dynamics of RIP kinases in response to TNF pathway activation and small molecule interactions. Finally, we show that CDK4/6 interactions with regulatory proteins alter conformations which remain unaffected in the presence of clinically applied inhibitors. Apart from its predictive value, the KinCon technology helps to identify cellular factors that impact drug efficacies. The understanding of the structural dynamics of full-length protein kinases when interacting with small molecule inhibitors or regulatory proteins is crucial for designing more effective therapeutic strategies.


Assuntos
Conformação Proteica , Humanos , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Quinases/metabolismo , Proteínas Quinases/química , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Linhagem Celular Tumoral
4.
PNAS Nexus ; 2(6): pgad185, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37325027

RESUMO

The selective targeting of mutated kinases in cancer therapies has the potential to improve therapeutic success and thereby the survival of patients. In the case of melanoma, the constitutively active MAPK pathway is targeted by a combinatorial inhibition of BRAF and MEK activities. These MAPK pathway players may display patient-specific differences in the onco-kinase mutation spectrum, which needs to be considered for the design of more efficient personalized therapies. Here, we extend a bioluminescence-based kinase conformation biosensor (KinCon) to allow for live-cell tracking of interconnected kinase activity states. First, we show that common MEK1 patient mutations promote a structural rearrangement of the kinase to an opened and active conformation. This effect was reversible by the binding of MEK inhibitors to mutated MEK1, as shown in biosensor assays and molecular dynamics simulations. Second, we implement a novel application of the KinCon technology for tracking the simultaneous, vertical targeting of the two functionally linked kinases BRAF and MEK1. Thus, we demonstrate that, in the presence of constitutively active BRAF-V600E, specific inhibitors of both kinases are efficient in driving MEK1 into a closed, inactive conformation state. We compare current melanoma treatments and show that combinations of BRAFi and MEKi display a more pronounced structural change of the drug sensor than the respective single agents, thereby identifying synergistic effects among these drug combinations. In summary, we depict the extension of the KinCon biosensor technology to systematically validate, anticipate, and personalize tailored drug arrangements using a multiplexed setup.

5.
Life Sci Alliance ; 6(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37280085

RESUMO

NF2 (moesin-ezrin-radixin-like [MERLIN] tumor suppressor) is frequently inactivated in cancer, where its NF2 tumor suppressor functionality is tightly coupled to protein conformation. How NF2 conformation is regulated and how NF2 conformation influences tumor suppressor activity is a largely open question. Here, we systematically characterized three NF2 conformation-dependent protein interactions utilizing deep mutational scanning interaction perturbation analyses. We identified two regions in NF2 with clustered mutations which affected conformation-dependent protein interactions. NF2 variants in the F2-F3 subdomain and the α3H helix region substantially modulated NF2 conformation and homomerization. Mutations in the F2-F3 subdomain altered proliferation in three cell lines and matched patterns of disease mutations in NF2 related-schwannomatosis. This study highlights the power of systematic mutational interaction perturbation analysis to identify missense variants impacting NF2 conformation and provides insight into NF2 tumor suppressor function.


Assuntos
Neoplasias , Neurofibromina 2 , Humanos , Neurofibromina 2/genética , Neurofibromina 2/química , Neurofibromina 2/metabolismo , Domínios FERM , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Conformação Proteica
6.
Cell Syst ; 13(10): 830-843.e3, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36265469

RESUMO

Resistance to pharmacological treatments is a major public health challenge. Here, we introduce Resistor-a structure- and sequence-based algorithm that prospectively predicts resistance mutations for drug design. Resistor computes the Pareto frontier of four resistance-causing criteria: the change in binding affinity (ΔKa) of the (1) drug and (2) endogenous ligand upon a protein's mutation; (3) the probability a mutation will occur based on empirically derived mutational signatures; and (4) the cardinality of mutations comprising a hotspot. For validation, we applied Resistor to EGFR and BRAF kinase inhibitors treating lung adenocarcinoma and melanoma. Resistor correctly identified eight clinically significant EGFR resistance mutations, including the erlotinib and gefitinib "gatekeeper" T790M mutation and five known osimertinib resistance mutations. Furthermore, Resistor predictions are consistent with BRAF inhibitor sensitivity data from both retrospective and prospective experiments using KinCon biosensors. Resistor is available in the open-source protein design software OSPREY.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Cloridrato de Erlotinib , Gefitinibe/uso terapêutico , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Inibidores de Proteínas Quinases/farmacologia , Mutação/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Ligantes , Estudos Prospectivos , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Algoritmos
7.
Memo ; 15(2): 137-142, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35677701

RESUMO

Numerous kinases act as central nodes of cellular signaling networks. As such, many of these enzymes function as molecular switches for coordinating spatiotemporal signal transmission. Typically, it is the compartmentalized phosphorylation of protein substrates which relays the transient input signal to determine decisive physiological cell responses. Genomic alterations affect kinase abundance and/or their activities which contribute to the malignant transformation, progression, and metastasis of human cancers. Thus, major drug discovery efforts have been made to identify lead molecules targeting clinically relevant oncokinases. The concept of personalized medicine aims to apply the therapeutic agent with the highest efficacy towards a patient-specific mutation. Here, we discuss the implementation of a cell-based reporter system which may foster the decision-making process to identify the most promising lead-molecules. We present a modular kinase conformation (KinCon) biosensor platform for live-cell analyses of kinase activity states. This biosensor facilitates the recording of kinase activity conformations of the wild-type and the respective mutated kinase upon lead molecule exposure. We reflect proof-of-principle studies demonstrating how this technology has been extended to profile drug properties of the full-length kinases BRAF and MEK1 in intact cells. Further, we pinpoint how this technology may open new avenues for systematic and patient-tailored drug discovery efforts. Overall, this precision-medicineoriented biosensor concept aims to determine kinase inhibitor specificity and anticipate their drug efficacies.

8.
Front Oncol ; 11: 660481, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937075

RESUMO

The c-Myc protein (MYC) is a transcription factor with strong oncogenic potential controlling fundamental cellular processes. In most human tumors, MYC is overexpressed by enhanced transcriptional activation, gene amplification, chromosomal rearrangements, or increased protein stabilization. To pharmacologically suppress oncogenic MYC functions, multiple approaches have been applied either to inhibit transcriptional activation of the endogenous MYC gene, or to interfere with biochemical functions of aberrantly activated MYC. Other critical points of attack are targeted protein modification, or destabilization leading to a non-functional MYC oncoprotein. It has been claimed that the natural compound curcumin representing the principal curcumoid of turmeric (Curcuma longa) has anticancer properties although its specificity, efficacy, and the underlying molecular mechanisms have been controversially discussed. Here, we have tested curcumin's effect on MYC-dependent cell transformation and transcriptional activation, and found that this natural compound interferes with both of these MYC activities. Furthermore, in curcumin-treated cells, the endogenous 60-kDa MYC protein is covalently and specifically cross-linked to one of its transcriptional interaction partners, namely the 434-kDa transformation/transcription domain associated protein (TRRAP). Thereby, endogenous MYC levels are strongly reduced and cells stop to proliferate. TRRAP is a multidomain adaptor protein of the phosphoinositide 3-kinase-related kinases (PIKK) family and represents an important component of many histone acetyltransferase (HAT) complexes. TRRAP is important to mediate transcriptional activation executed by the MYC oncoprotein, but on the other hand TRRAP also negatively regulates protein stability of the tumor suppressor p53 (TP53). Curcumin-mediated covalent binding of MYC to TRRAP reduces the protein amounts of both interaction partners but does not downregulate TP53, so that the growth-arresting effect of wild type TP53 could prevail. Our results elucidate a molecular mechanism of curcumin action that specifically and irreversibly targets two crucial multifunctional cellular players. With regard to their broad impact in cancer, our findings contribute to explain the pleiotropic functions of curcumin, and suggest that this natural spice, or more bioavailable derivatives thereof, may constitute useful adjuvants in the therapy of MYC-dependent and TRRAP-associated human tumors.

9.
Biomolecules ; 11(4)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808483

RESUMO

Mutations at different stages of the mitogen-activated protein kinase (MAPK) signaling pathway lead to aberrant activation of the involved protein kinase entities. These oncogenic modifications alter signal propagation which converge on the gatekeeper kinases MEK1/2, transmitting the input signal to ERK1/2. Thus, targeted MEK inhibition causes qualitative alterations of carcinogenic MAPK signals. Phosphorylation of the MEK1 activation loop at the positions S218 and S222 by RAF kinases triggers the conformational alignment of MEK's catalytic pocket to enable ATP-binding and substrate phosphorylation. We have extended a kinase conformation (KinCon) biosensor platform to record MEK1 activity dynamics. In addition to MEK phosphorylation by BRAF, the integration of the phosphorylation-mimetic mutations S218D/S222D triggered opening of the kinase. Structural rearrangement may involve the flexibility of the N terminal MEK1 A-helix. Application of the allosterically acting MEK inhibitors (MEKi) trametinib, cobimentinib, refametinib, and selumetinib converted activated MEK1 KinCon reporters back into a more closed inactive conformation. We confirmed MEK1 KinCon activity dynamics upon drug engagement using the patient-derived melanoma cell line A2058, which harbors the V600E hotspot BRAF mutation. In order to confirm biosensor dynamics, we simulated structure dynamics of MEK1 kinase in the presence and absence of mutations and/or MEKi binding. We observed increased dynamics for the S218D/S222D double mutant particularly in the region of the distal A-helix and alpha-C helix. These data underline that MEK1 KinCon biosensors have the potential to be subjected to MEKi efficacy validations in an intact cell setting.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/genética , Inibidores de Proteínas Quinases/farmacologia , Benzimidazóis/farmacologia , Linhagem Celular Tumoral , Simulação por Computador , Células HEK293 , Humanos , MAP Quinase Quinase 1/química , MAP Quinase Quinase 1/metabolismo , Melanoma/patologia , Simulação de Dinâmica Molecular , Mutação , Fosforilação , Conformação Proteica , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Sci Signal ; 14(678)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850054

RESUMO

The complex mTORC2 is accepted to be the kinase that controls the phosphorylation of the hydrophobic motif, a key regulatory switch for AGC kinases, although whether mTOR directly phosphorylates this motif remains controversial. Here, we identified an mTOR-mediated phosphorylation site that we termed the TOR interaction motif (TIM; F-x3-F-pT), which controls the phosphorylation of the hydrophobic motif of PKC and Akt and the activity of these kinases. The TIM is invariant in mTORC2-dependent AGC kinases, is evolutionarily conserved, and coevolved with mTORC2 components. Mutation of this motif in Akt1 and PKCßII abolished cellular kinase activity by impairing activation loop and hydrophobic motif phosphorylation. mTORC2 directly phosphorylated the PKC TIM in vitro, and this phosphorylation event was detected in mouse brain. Overexpression of PDK1 in mTORC2-deficient cells rescued hydrophobic motif phosphorylation of PKC and Akt by a mechanism dependent on their intrinsic catalytic activity, revealing that mTORC2 facilitates the PDK1 phosphorylation step, which, in turn, enables autophosphorylation. Structural analysis revealed that PKC homodimerization is driven by a TIM-containing helix, and biophysical proximity assays showed that newly synthesized, unphosphorylated PKC dimerizes in cells. Furthermore, disruption of the dimer interface by stapled peptides promoted hydrophobic motif phosphorylation. Our data support a model in which mTORC2 relieves nascent PKC dimerization through TIM phosphorylation, recruiting PDK1 to phosphorylate the activation loop and triggering intramolecular hydrophobic motif autophosphorylation. Identification of TIM phosphorylation and its role in the regulation of PKC provides the basis for AGC kinase regulation by mTORC2.


Assuntos
Alvo Mecanístico do Complexo 2 de Rapamicina , Peptídeos , Proteína Quinase C , Proteínas Proto-Oncogênicas c-akt , Motivos de Aminoácidos , Animais , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
11.
Sci Adv ; 5(8): eaav8463, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31453322

RESUMO

Oncogenic BRAF mutations initiate tumor formation by unleashing the autoinhibited kinase conformation and promoting RAS-decoupled proliferative RAF-MEK-ERK signaling. We have engineered luciferase-based biosensors to systematically track full-length BRAF conformations and interactions affected by tumorigenic kinase mutations and GTP loading of RAS. Binding of structurally diverse αC-helix-OUT BRAF inhibitors (BRAFi) showed differences in specificity and efficacy by shifting patient mutation-containing BRAF reporters from the definitive opened to more closed conformations. Unexpectedly, BRAFi engagement with the catalytic pocket of V600E-mutated BRAF stabilized an intermediate and inactive kinase conformation that enhanced binary RAS:RAF interactions, also independently of RAF dimerization in melanoma cells. We present evidence that the interference with RAS interactions and nanoclustering antagonizes the sequential formation of drug-induced RAS:RAF tetramers. This suggests a previously unappreciated allosteric effect of anticancer drug-driven intramolecular communication between the kinase and RAS-binding domains of mutated BRAF, which may further promote paradoxical kinase activation and drug resistance mechanisms.


Assuntos
Melanoma/tratamento farmacológico , Melanoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Antineoplásicos/farmacologia , Técnicas Biossensoriais , Domínio Catalítico/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/genética , Conformação Molecular , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA