Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Eng Phys ; 37(8): 801-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26130603

RESUMO

The material properties of atherosclerotic plaques govern the biomechanical environment, which is associated with rupture-risk. We investigated the feasibility of noninvasively estimating carotid plaque component material properties through simulating ultrasound (US) elastography and in vivo magnetic resonance imaging (MRI), and solving the inverse problem with finite element analysis. 2D plaque models were derived from endarterectomy specimens of nine patients. Nonlinear neo-Hookean models (tissue elasticity C1) were assigned to fibrous intima, wall (i.e., media/adventitia), and lipid-rich necrotic core. Finite element analysis was used to simulate clinical cross-sectional US strain imaging. Computer-simulated, single-slice in vivo MR images were segmented by two MR readers. We investigated multiple scenarios for plaque model elasticity, and consistently found clear separations between estimated tissue elasticity values. The intima C1 (160 kPa scenario) was estimated as 125.8 ± 19.4 kPa (reader 1) and 128.9 ± 24.8 kPa (reader 2). The lipid-rich necrotic core C1 (5 kPa) was estimated as 5.6 ± 2.0 kPa (reader 1) and 8.5 ± 4.5 kPa (reader 2). A scenario with a stiffer wall yielded similar results, while realistic US strain noise and rotating the models had little influence, thus demonstrating robustness of the procedure. The promising findings of this computer-simulation study stimulate applying the proposed methodology in a clinical setting.


Assuntos
Doenças das Artérias Carótidas/diagnóstico por imagem , Doenças das Artérias Carótidas/patologia , Técnicas de Imagem por Elasticidade/métodos , Imageamento por Ressonância Magnética/métodos , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Simulação por Computador , Estudos de Viabilidade , Análise de Elementos Finitos , Humanos , Modelos Cardiovasculares , Dinâmica não Linear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA