Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Ecol Lett ; 23(4): 663-673, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32012420

RESUMO

Underpinnings of the distribution of allopolyploid species (hybrids with duplicated genome) along spatial and ecological gradients are elusive. As allopolyploid speciation combines the range of genetic and ecological characteristics of divergent diploids, allopolyploids initially show their additivity and are predicted to evolve differentiated ecological niches to establish in face of their competition. Here, we use four diploid wild wheats that differentially combined into four independent allopolyploid species to test for such additivity and assess the impact of ecological constraints on species ranges. Divergent genetic variation from diploids being fixed in heterozygote allopolyploids supports their genetic additivity. Spatial integration of comparative phylogeography and modelling of climatic niches supports ecological additivity of locally adapted diploid progenitors into allopolyploid species which subsequently colonised wide ranges. Allopolyploids fill suitable range to a larger extent than diploids and conservative evolution following the combination of divergent species appears to support their expansion under environmental changes.


Assuntos
Diploide , Triticum , Ecossistema , Humanos , Filogeografia , Poliploidia
2.
Mol Phylogenet Evol ; 139: 106554, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31288105

RESUMO

Evolutionary relationships among the Aegilops-Triticum relatives of cultivated wheats have been difficult to resolve owing to incomplete lineage sorting and reticulate evolution. Recent studies have suggested that the wheat D-genome lineage (progenitor of Ae. tauschii) originated through homoploid hybridization between the A-genome lineage (progenitor of Triticum s.str.) and the B-genome lineage (progenitor of Ae. speltoides). This scenario of reticulation has been debated, calling for adequate phylogenetic analyses based on comprehensive sampling. To reconstruct the evolution of Aegilops-Triticum diploids, we here combined high-throughput sequencing of 38 nuclear low-copy loci of multiple accessions of all 13 species with inferences of the species phylogeny using the full-parameterized MCMC_SEQ method. Phylogenies recovered a monophyletic Aegilops-Triticum lineage that began diversifying ~6.6 Ma ago and gave rise to four sublineages, i.e. the A- (2 species), B- (1 species), D- (9 species) and T- (Ae. mutica) genome lineage. Full-parameterized phylogenies as well as patterns of tree dilation and tree compression supported a hybrid origin of the D-genome lineage from A and B ~3.0-4.0 Ma ago, and did not indicate additional hybridization events. Conflicting ABBA-BABA tests suggestive of further reticulation were shown here to result from ancestral population structure rather than hybridization. This comprehensive and dated phylogeny of wheat relatives indicates that the origin of the hybrid D-genome was followed by intense diversification into the majority of extant diploid as well as allopolyploid wild wheats.


Assuntos
Evolução Biológica , Diploide , Hibridização Genética , Triticum/genética , Núcleo Celular/genética , Genoma de Planta , Filogenia , Especificidade da Espécie
3.
J Hered ; 108(2): 194-206, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28172969

RESUMO

Prickly lettuce (Lactuca serriola L., Asteraceae), a wild relative of cultivated lettuce, is an autogamous species which greatly expanded throughout Western and Northern Europe during the last 2 centuries. Here, we present a large-scale biogeographic genetic analysis performed on a dataset represented by 2622 individuals from 110 wild European populations. Thirty-two maternally inherited chloroplast RFLP-markers and 10 nuclear microsatellite loci were used. Microsatellites revealed low genetic variation and high inbreeding coefficients within populations, as well as strong genetic differentiation between populations, which was in accordance with the autogamous breeding system. Analysis of molecular variance based clustering indicated the presence of 3 population clusters, which showed strong geographical patterns. One cluster occupied United Kingdom and part of Northern Europe, and characterized populations with a single predominant genotype. The second mostly combined populations from Northern Europe, while the third cluster grouped populations particularly from Southern Europe. Kriging of gene diversity for L. serriola corroborated northwards and westwards spread from Central (Eastern) Europe. Significant lower genetic diversity characterized the newly colonized parts of the range compared to the historical ones, confirming the importance of founder effects. Stronger pattern of isolation by distance was assessed in the newly colonized areas than in the historical areas (Mantel's r = 0.20). In the newly colonized areas, populations at short geographic distances were genetically more similar than those in the historical areas. Our results corroborate the species' recent and rapid northward and westward colonization from Eastern Europe, as well as a decrease of genetic diversity in recently established populations.


Assuntos
Efeito Fundador , Variação Genética , Genética Populacional , Lactuca/genética , Repetições de Microssatélites , Europa (Continente) , Genótipo , Geografia , Reino Unido
4.
Mol Ecol ; 25(11): 2518-28, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26678573

RESUMO

The maintenance of species integrity despite pervasive hybridization is ruled by the interplay between reproductive barriers. Endogenous postzygotic isolation will shape the patterns of introgression in hybrid zones, leading to variable outcomes depending on the genetic mechanism involved. Here, we analysed experimental and natural hybrid populations of Aegilops geniculata and Aegilops triuncialis to examine the genetics of species boundaries in the face of gene flow. Because long-terminal repeat retrotransposons (LTR-RTs) showing differential evolutionary trajectories are probably to affect hybrid dysgenesis and reproductive isolation between these wild wheat species, we addressed the impact of LTR-RTs in shaping introgression between them. Experimental settings involving artificial sympatry and enforced crossings quantified strong, but incomplete reproductive isolation, and highlighted asymmetrical endogenous postzygotic isolation between the two species. Natural hybrid zones located in the northern Golan Heights were analysed using plastid DNA, amplified fragment length polymorphisms (AFLP) marking random sequences, and sequence-specific amplified polymorphisms (SSAP) tracking insertions from six LTR-RT families. This analysis demonstrated asymmetrical introgression and genome reorganization. In comparison with random sequences and quiescent LTR-RTs, those LTR-RTs predicted to be activated following conflicting interactions in hybrids revealed differential introgression across the hybrid zones. As also reported for synthetic F1 hybrids, such LTR-RTs were specifically reorganized in the genomes of viable hybrids, confirming that conflicts between selfish LTR-RTs may represent key incompatibilities shaping species boundaries and fostering long-term species integrity in the face of gene flow.


Assuntos
Hibridização Genética , Poaceae/genética , Isolamento Reprodutivo , Retroelementos , Triticum/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , DNA de Cloroplastos/genética , DNA de Plantas/genética , Fluxo Gênico , Marcadores Genéticos , Genética Populacional , Genoma de Planta , Sequências Repetidas Terminais
5.
Proc Biol Sci ; 282(1804): 20142874, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25716787

RESUMO

Interspecific hybridization leads to new interactions among divergent genomes, revealing the nature of genetic incompatibilities having accumulated during and after the origin of species. Conflicts associated with misregulation of transposable elements (TEs) in hybrids expectedly result in their activation and genome-wide changes that may be key to species boundaries. Repetitive genomes of wild wheats have diverged under differential dynamics of specific long terminal repeat retrotransposons (LTR-RTs), offering unparalleled opportunities to address the underpinnings of plant genome reorganization by selfish sequences. Using reciprocal F1 hybrids between three Aegilops species, restructuring and epigenetic repatterning was assessed at random and LTR-RT sequences with amplified fragment length polymorphism and sequence-specific amplified polymorphisms as well as their methylation-sensitive counterparts, respectively. Asymmetrical reorganization of LTR-RT families predicted to cause conflicting interactions matched differential survival of F1 hybrids. Consistent with the genome shock model, increasing divergence of merged LTR-RTs yielded higher levels of changes in corresponding genome fractions and lead to repeated reorganization of LTR-RT sequences in F1 hybrids. Such non-random reorganization of hybrid genomes is coherent with the necessary repression of incompatible TE loci in support of hybrid viability and indicates that TE-driven genomic conflicts may represent an overlooked factor supporting reproductive isolation.


Assuntos
Genoma de Planta , Poaceae/genética , Isolamento Reprodutivo , Retroelementos , Sequências Repetidas Terminais , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Hibridização Genética
6.
New Phytol ; 202(3): 975-985, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24548250

RESUMO

Transposable elements (TEs) are expectedly central to genome evolution. To assess the impact of TEs in driving genome turnover, we used allopolyploid genomes, showing considerable deviation from the predicted additivity of their diploid progenitors and thus having undergone major restructuring. Genome survey sequencing was used to select 17 putatively active families of long terminal repeat retrotransposons. Genome-wide TE insertions were genotyped with sequence-specific amplified polymorphism (SSAP) in diploid progenitors and their derived polyploids, and compared with changes in random sequences to assess restructuring of four independent Aegilops allotetraploid genomes. Generally, TEs with different evolutionary trajectories from those of random sequences were identified. Thus, TEs presented family-specific and species-specific dynamics following polyploidy, as illustrated by Sabine showing proliferation in particular polyploids, but massive elimination in others. Contrasting with that, only a few families (BARE1 and Romani) showed proliferation in all polyploids. Overall, TE divergence between progenitors was strongly correlated with the degree of restructuring in polyploid TE fractions. TE families present evolutionary trajectories that are decoupled from genome-wide changes after allopolyploidy and have a pervasive impact on their restructuring.


Assuntos
Evolução Molecular , Poliploidia , Retroelementos/genética , Triticum/genética , Sequência de Bases , Diploide , Loci Gênicos/genética , Variação Genética , Genoma de Planta/genética , Especificidade da Espécie , Sequências Repetidas Terminais/genética
7.
Mol Ecol ; 23(20): 5089-101, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25223217

RESUMO

Extensive gene flow between wheat (Triticum sp.) and several wild relatives of the genus Aegilops has recently been detected despite notoriously high levels of selfing in these species. Here, we assess and model the spread of wheat alleles into natural populations of the barbed goatgrass (Aegilops triuncialis), a wild wheat relative prevailing in the Mediterranean flora. Our sampling, based on an extensive survey of 31 Ae. triuncialis populations collected along a 60 km × 20 km area in southern Spain (Grazalema Mountain chain, Andalousia, totalling 458 specimens), is completed with 33 wheat cultivars representative of the European domesticated pool. All specimens were genotyped with amplified fragment length polymorphism with the aim of estimating wheat admixture levels in Ae. triuncialis populations. This survey first confirmed extensive hybridization and backcrossing of wheat into the wild species. We then used explicit modelling of populations and approximate Bayesian computation to estimate the selfing rate of Ae. triuncialis along with the magnitude, the tempo and the geographical distance over which wheat alleles introgress into Ae. triuncialis populations. These simulations confirmed that extensive introgression of wheat alleles (2.7 × 10(-4) wheat immigrants for each Ae. triuncialis resident, at each generation) into Ae. triuncialis occurs despite a high selfing rate (Fis ≈ 1 and selfing rate = 97%). These results are discussed in the light of risks associated with the release of genetically modified wheat cultivars in Mediterranean agrosystems.


Assuntos
Fluxo Gênico , Hibridização Genética , Poaceae/genética , Triticum/genética , Alelos , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Teorema de Bayes , DNA de Plantas/genética , Genética Populacional , Modelos Genéticos , Espanha
8.
Mol Ecol ; 21(11): 2640-54, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22512715

RESUMO

Interspecific gene flow can lead to the formation of hybrid populations that have a competitive advantage over the parental populations, even for hybrids from a cross between crops and wild relatives. Wild prickly lettuce (Lactuca serriola) has recently expanded in Europe and hybridization with the related crop species (cultivated lettuce, L. sativa) has been hypothesized as one of the mechanisms behind this expansion. In a basically selfing species, such as lettuce, assessing hybridization in natural populations may not be straightforward. Therefore, we analysed a uniquely large data set of plants genotyped with SSR (simple sequence repeat) markers with two programs for Bayesian population genetic analysis, STRUCTURE and NewHybrids. The data set comprised 7738 plants, including a complete genebank collection, which provided a wide coverage of cultivated germplasm and a fair coverage of wild accessions, and a set of wild populations recently sampled across Europe. STRUCTURE analysis inferred the occurrence of hybrids at a level of 7% across Europe. NewHybrids indicated these hybrids to be advanced selfed generations of a hybridization event or of one backcross after such an event, which is according to expectations for a basically selfing species. These advanced selfed generations could not be detected effectively with crop-specific alleles. In the northern part of Europe, where the expansion of L. serriola took place, the fewest putative hybrids were found. Therefore, we conclude that other mechanisms than crop/wild gene flow, such as an increase in disturbed habitats and/or climate warming, are more likely explanations for this expansion.


Assuntos
Teorema de Bayes , Produtos Agrícolas/genética , Fluxo Gênico , Genética Populacional , Lactuca/genética , Alelos , Quimera , Europa (Continente) , Repetições de Microssatélites , Modelos Genéticos
9.
New Phytol ; 187(4): 1170-1180, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20561204

RESUMO

*This study reconstructs the phylogeography of Aegilops geniculata, an allotetraploid relative of wheat, to discuss the impact of past climate changes and recent human activities (e.g. the early expansion of agriculture) on the genetic diversity of ruderal plant species. *We combined chloroplast DNA (cpDNA) sequencing, analysed using statistical parsimony network, with nonhierarchical K-means clustering of amplified fragment length polymorphism (AFLP) genotyping, to unravel patterns of genetic structure across the native range of Ae. geniculata. The AFLP dataset was further explored by measurement of the regional genetic diversity and the detection of isolation by distance patterns. *Both cpDNA and AFLP suggest an eastern Mediterranean origin of Ae. geniculata. Two lineages have spread independently over northern and southern Mediterranean areas. Northern populations show low genetic diversity but strong phylogeographical structure among the main peninsulas, indicating a major influence of glacial cycles. By contrast, low genetic structuring and a high genetic diversity are detected in southern Mediterranean populations. Finally, we highlight human-mediated dispersal resulting in substantial introgression between resident and migrant populations. *We have shown that the evolutionary trajectories of ruderal plants can be similar to those of wild species, but are interfered by human activities, promoting range expansions through increased long-distance dispersal and the creation of suitable habitats.


Assuntos
Evolução Biológica , Ecossistema , Variação Genética , Filogenia , Poaceae/genética , Tetraploidia , Mudança Climática , DNA de Cloroplastos , Ecologia , Genótipo , Humanos , Mar Mediterrâneo , Filogeografia , Dispersão de Sementes , Triticum/genética
10.
Mol Ecol Resour ; 19(3): 773-787, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30636378

RESUMO

Advances in high-throughput sequencing have promoted the collection of reference genomes and genome-wide diversity. However, the assessment of genomic variation among populations has hitherto mainly been surveyed through single-nucleotide polymorphisms (SNPs) and largely ignored the often major fraction of genomes represented by transposable elements (TEs). Despite accumulating evidence supporting the evolutionary significance of TEs, comprehensive surveys remain scarce. Here, we sequenced the full genomes of 304 individuals of Arabis alpina sampled from four nearby natural populations to genotype SNPs as well as polymorphic long terminal repeat retrotransposons (polymorphic TEs; i.e., presence/absence of TE insertions at specific loci). We identified 291,396 SNPs and 20,548 polymorphic TEs, comparing their contributions to genomic diversity and divergence across populations. Few SNPs were shared among populations and overall showed high population-specific variation, whereas most polymorphic TEs segregated among populations. The genomic context of these two classes of variants further highlighted candidate adaptive loci having a putative impact on functional genes. In particular, 4.96% of the SNPs were identified as nonsynonymous or affecting start/stop codons. In contrast, 43% of the polymorphic TEs were present next to Arabis genes enriched in functional categories related to the regulation of reproduction and responses to biotic as well as abiotic stresses. This unprecedented data set, mapping variation gained from SNPs and complementary polymorphic TEs within and among populations, will serve as a rich resource for addressing microevolutionary processes shaping genome variation.


Assuntos
Arabis/classificação , Arabis/genética , Variação Genética , Genoma de Planta , Retroelementos , Biologia Computacional , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
11.
Genetics ; 174(4): 2061-70, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17028347

RESUMO

Natural hybridization and backcrossing between Aegilops cylindrica and Triticum aestivum can lead to introgression of wheat DNA into the wild species. Hybrids between Ae. cylindrica and wheat lines bearing herbicide resistance (bar), reporter (gus), fungal disease resistance (kp4), and increased insect tolerance (gna) transgenes were produced by pollination of emasculated Ae. cylindrica plants. F1 hybrids were backcrossed to Ae. cylindrica under open-pollination conditions, and first backcrosses were selfed using pollen bags. Female fertility of F1 ranged from 0.03 to 0.6%. Eighteen percent of the sown BC1s germinated and flowered. Chromosome numbers ranged from 30 to 84 and several of the plants bore wheat-specific sequence-characterized amplified regions (SCARs) and the bar gene. Self fertility in two BC1 plants was 0.16 and 5.21%, and the others were completely self-sterile. Among 19 BC1S1 individuals one plant was transgenic, had 43 chromosomes, contained the bar gene, and survived glufosinate treatments. The other BC1S1 plants had between 28 and 31 chromosomes, and several of them carried SCARs specific to wheat A and D genomes. Fertility of these plants was higher under open-pollination conditions than by selfing and did not necessarily correlate with even or euploid chromosome number. Some individuals having supernumerary wheat chromosomes recovered full fertility.


Assuntos
Cruzamentos Genéticos , DNA de Plantas/genética , Marcadores Genéticos/genética , Poaceae/genética , Triticum/genética , Cruzamento , Cromossomos de Plantas , Análise Citogenética , Resistência a Herbicidas , Hibridização Genética , Proteínas de Plantas , Plantas Geneticamente Modificadas
12.
Evol Appl ; 9(3): 479-88, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26989439

RESUMO

Numerous studies assess the correlation between genetic and species diversities, but the processes underlying the observed patterns have only received limited attention. For instance, varying levels of habitat disturbance across a region may locally reduce both diversities due to extinctions, and increased genetic drift during population bottlenecks and founder events. We investigated the regional distribution of genetic and species diversities of a coastal sand dune plant community along 240 kilometers of coastline with the aim to test for a correlation between the two diversity levels. We further quantify and tease apart the respective contributions of natural and anthropogenic disturbance factors to the observed patterns. We detected significant positive correlation between both variables. We further revealed a negative impact of urbanization: Sites with a high amount of recreational infrastructure within 10 km coastline had significantly lowered genetic and species diversities. On the other hand, a measure of natural habitat disturbance had no effect. This study shows that parallel variation of genetic and species diversities across a region can be traced back to human landscape alteration, provides arguments for a more resolute dune protection, and may help to design priority conservation areas.

13.
Genome Biol Evol ; 5(5): 1010-20, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23595021

RESUMO

Transposable elements (TEs) represent a major fraction of plant genomes and drive their evolution. An improved understanding of genome evolution requires the dynamics of a large number of TE families to be considered. We put forward an approach bypassing the required step of a complete reference genome to assess the evolutionary trajectories of high copy number TE families from genome snapshot with high-throughput sequencing. Low coverage sequencing of the complex genomes of Aegilops cylindrica and Ae. geniculata using 454 identified more than 70% of the sequences as known TEs, mainly long terminal repeat (LTR) retrotransposons. Comparing the abundance of reads as well as patterns of sequence diversity and divergence within and among genomes assessed the dynamics of 44 major LTR retrotransposon families of the 165 identified. In particular, molecular population genetics on individual TE copies distinguished recently active from quiescent families and highlighted different evolutionary trajectories of retrotransposons among related species. This work presents a suite of tools suitable for current sequencing data, allowing to address the genome-wide evolutionary dynamics of TEs at the family level and advancing our understanding of the evolution of nonmodel genomes.


Assuntos
Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Retroelementos/genética , Triticum/genética , Genoma de Planta , Poaceae/genética , Sequências Repetidas Terminais/genética
14.
Evol Appl ; 4(5): 685-95, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25568015

RESUMO

Gene flow between domesticated species and their wild relatives is receiving growing attention. This study addressed introgression between wheat and natural populations of its wild relatives (Aegilops species). The sampling included 472 individuals, collected from 32 Mediterranean populations of three widespread Aegilops species (Aegilops geniculata, Ae. neglecta and Ae. triuncialis) and compared wheat field borders to areas isolated from agriculture. Individuals were characterized with amplified fragment length polymorphism fingerprinting, analysed through two computational approaches (i.e. Bayesian estimations of admixture and fuzzy clustering), and sequences marking wheat-specific insertions of transposable elements. With this combined approach, we detected substantial gene flow between wheat and Aegilops species. Specifically, Ae. neglecta and Ae. triuncialis showed significantly more admixed individuals close to wheat fields than in locations isolated from agriculture. In contrast, little evidence of gene flow was found in Ae. geniculata. Our results indicated that reproductive barriers have been regularly bypassed during the long history of sympatry between wheat and Aegilops.

15.
Environ Biosafety Res ; 7(2): 61-71, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18549768

RESUMO

Hybridization and introgression between crops and wild relatives may have important evolutionary and ecological consequences such as gene swamping or increased invasiveness. In the present study, we investigated hybridization under field conditions between crop lettuce (Lactuca sativa) and its wild relative prickly lettuce (L. serriola), two cross-compatible, predominantly autogamous and insect pollinated species. In 2003 and 2004, we estimated the rates of hybridization between L. sativa and L. serriola in close-to-reality field experiments carried out in two locations of Northern Switzerland. Seeds set by the experimental wild plants were collected and sown (44 352 in 2003 and 252 345 in 2004). Progeny was screened morphologically for detecting natural hybrids. Prior to the experiment, specific RAPD markers were used to confirm that morphological characters were reliable for hybrid identification. Hybridization occurred up to the maximal distance tested (40 m), and hybridization rates varied between 0 to 26%, decreasing with distance. More than 80% of the wild plants produced at least one hybrid (incidence of hybridization, IH) at 0 m and 1 m. It equaled 4 to 5% at 40 m. In sympatric crop-wild populations, cross-pollination between cultivated lettuce and its wild relative has to be seen as the rule rather than the exception for short distances.


Assuntos
Hibridização Genética , Lactuca/genética , Polinização , Sementes/genética , Animais , Abelhas , Dípteros , Fluxo Gênico , Marcadores Genéticos , Plantas Geneticamente Modificadas , Técnica de Amplificação ao Acaso de DNA Polimórfico , Vespas
16.
Adv Biochem Eng Biotechnol ; 107: 173-205, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17522826

RESUMO

Gene flow from crops to wild relatives by sexual reproduction is one of the major issues in risk assessment for the cultivation of genetically engineered (GE) plants. The main factors which influence hybridization and introgression, the two processes of gene flow, as well as the accompanying containment measures of the transgene, are reviewed. The comparison of risks between Switzerland and Europe highlights the importance of regional studies. Differences were assessed for barley, beet and wheat. Moreover, transgene flow through several wild species acting as bridge (bridge species) has been up to now poorly investigated. Indeed, transgene flow may go beyond the closest wild relative, as in nature several wild species complexes hybridize. Its importance is assessed by several examples in Poaceae. Finally, the transgene itself has genetic and ecological consequences that are reviewed. Transgenic hybrids between crops and wild relatives may have lower fitness than the wild relatives, but in several cases, no cost was detected. On the other hand, the transgene provides advantages to the hybrids, in the case of selective value as a Bt transgene in the presence of herbivores. Genetic and ecological consequences of a transgene in a wild species are complex and depend on the type of transgene, its insertion site, the density of plants and ecological factors. More studies are needed for understanding the short and long term consequences of escape of a transgene in the wild.


Assuntos
Ecologia , Fluxo Gênico , Hibridização Genética , Plantas Geneticamente Modificadas , Transgenes , Produtos Agrícolas/genética , Modelos Genéticos , Poaceae/genética , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA