Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 105(25): 256806, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-21231612

RESUMO

Bilayer graphene has attracted considerable interest due to the important role played by many-body effects, particularly at low energies. Here we report local compressibility measurements of a suspended graphene bilayer. We find that the energy gaps at filling factors ν= ± 4 do not vanish at low fields, but instead merge into an incompressible region near the charge neutrality point at zero electric and magnetic field. These results indicate the existence of a zero-field ordered state and are consistent with the formation of either an anomalous quantum Hall state or a nematic phase with broken rotational symmetry. At higher fields, we measure the intrinsic energy gaps of broken-symmetry states at ν=0, ± 1, and ± 2, and find that they scale linearly with magnetic field, yet another manifestation of the strong Coulomb interactions in bilayer graphene.

2.
J Phys Condens Matter ; 31(27): 273001, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743251

RESUMO

Two-dimensional electron gases in strong magnetic fields provide a canonical platform for realizing a variety of electronic ordering phenomena. Here we review the physics of one intriguing class of interaction-driven quantum Hall states: quantum Hall valley nematics. These phases of matter emerge when the formation of a topologically insulating quantum Hall state is accompanied by the spontaneous breaking of a point-group symmetry that combines a spatial rotation with a permutation of valley indices. The resulting orientational order is particularly sensitive to quenched disorder, while quantum Hall physics links charge conduction to topological defects. We discuss how these combine to yield a rich phase structure, and their implications for transport and spectroscopy measurements. In parallel, we discuss relevant experimental systems. We close with an outlook on future directions.

3.
Nat Commun ; 10(1): 648, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728356

RESUMO

This Article contains an error in the spelling of the author A. Yazdani, which is incorrectly given as A. Yadzani. The error has not been fixed in the original PDF and HTML versions of the Article.

4.
Nat Commun ; 7: 10847, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26924386

RESUMO

The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe2 have attracted considerable interest. Here we report angle- and spin-resolved photoemission spectroscopy of WTe2 single crystals, through which we disentangle the role of W and Te atoms in the formation of the band structure and identify the interplay of charge, spin and orbital degrees of freedom. Supported by first-principles calculations and high-resolution surface topography, we reveal the existence of a layer-dependent behaviour. The balance of electron and hole states is found only when considering at least three Te-W-Te layers, showing that the behaviour of WTe2 is not strictly two dimensional.

5.
Science ; 345(6192): 55-7, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24994644

RESUMO

The nature of fractional quantum Hall (FQH) states is determined by the interplay between the Coulomb interaction and the symmetries of the system. The distinct combination of spin, valley, and orbital degeneracies in bilayer graphene is predicted to produce an unusual and tunable sequence of FQH states. Here, we present local electronic compressibility measurements of the FQH effect in the lowest Landau level of bilayer graphene. We observe incompressible FQH states at filling factors ν = 2p + 2/3, with hints of additional states appearing at ν = 2p + 3/5, where p = -2, -1, 0, and 1. This sequence breaks particle-hole symmetry and obeys a ν → ν + 2 symmetry, which highlights the importance of the orbital degeneracy for many-body states in bilayer graphene.

7.
Science ; 330(6005): 812-6, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20947726

RESUMO

The single-particle energy spectra of graphene and its bilayer counterpart exhibit multiple degeneracies that arise through inherent symmetries. Interactions among charge carriers should spontaneously break these symmetries and lead to ordered states that exhibit energy gaps. In the quantum Hall regime, these states are predicted to be ferromagnetic in nature, whereby the system becomes spin polarized, layer polarized, or both. The parabolic dispersion of bilayer graphene makes it susceptible to interaction-induced symmetry breaking even at zero magnetic field. We investigated the underlying order of the various broken-symmetry states in bilayer graphene suspended between top and bottom gate electrodes. We deduced the order parameter of the various quantum Hall ferromagnetic states by controllably breaking the spin and sublattice symmetries. At small carrier density, we identified three distinct broken-symmetry states, one of which is consistent with either spontaneously broken time-reversal symmetry or spontaneously broken rotational symmetry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA