Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Metab ; 1(5): 323-30, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-16054079

RESUMO

Energy homeostasis, a fundamental property of all organisms, depends on the ability to control the storage and mobilization of fat, mainly triacylglycerols (TAG), in special organs such as mammalian adipose tissue or the fat body of flies. Malregulation of energy homeostasis underlies the pathogenesis of obesity in mammals including human. We performed a screen to identify nutritionally regulated genes that control energy storage in the model organism Drosophila. The brummer (bmm) gene encodes the lipid storage droplet-associated TAG lipase Brummer, a homolog of human adipocyte triglyceride lipase (ATGL). Food deprivation or chronic bmm overexpression depletes organismal fat stores in vivo, whereas loss of bmm activity causes obesity in flies. Our study identifies a key factor of insect energy homeostasis control. Their evolutionary conservation suggests Brummer/ATGL family members to be implicated in human obesity and establishes a basis for modeling mechanistic and therapeutic aspects of this disease in the fly.


Assuntos
Ácidos Graxos/metabolismo , Lipase/metabolismo , Adipócitos/enzimologia , Adipócitos/metabolismo , Animais , Drosophila , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Humanos , Lipase/genética , Lipase Lipoproteica/metabolismo , Obesidade/metabolismo , Filogenia , Triglicerídeos/metabolismo
2.
PLoS Biol ; 5(6): e137, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17488184

RESUMO

Energy homeostasis is a fundamental property of animal life, providing a genetically fixed balance between fat storage and mobilization. The importance of body fat regulation is emphasized by dysfunctions resulting in obesity and lipodystrophy in humans. Packaging of storage fat in intracellular lipid droplets, and the various molecules and mechanisms guiding storage-fat mobilization, are conserved between mammals and insects. We generated a Drosophila mutant lacking the receptor (AKHR) of the adipokinetic hormone signaling pathway, an insect lipolytic pathway related to ss-adrenergic signaling in mammals. Combined genetic, physiological, and biochemical analyses provide in vivo evidence that AKHR is as important for chronic accumulation and acute mobilization of storage fat as is the Brummer lipase, the homolog of mammalian adipose triglyceride lipase (ATGL). Simultaneous loss of Brummer and AKHR causes extreme obesity and blocks acute storage-fat mobilization in flies. Our data demonstrate that storage-fat mobilization in the fly is coordinated by two lipocatabolic systems, which are essential to adjust normal body fat content and ensure lifelong fat-storage homeostasis.


Assuntos
Drosophila/metabolismo , Lipase/metabolismo , Lipólise/fisiologia , Receptores LHRH/metabolismo , Animais , Drosophila/genética , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Lipase/genética , Mutação , Receptores LHRH/genética
3.
Mol Biol Cell ; 17(5): 2356-65, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16525017

RESUMO

We describe the molecular characterization and function of vielfältig (vfl), a X-chromosomal gene that encodes a nuclear protein with six Krüppel-like C2H2 zinc finger motifs. vfl transcripts are maternally contributed and ubiquitously distributed in eggs and preblastoderm embryos, excluding the germline precursor cells. Zygotically, vfl is expressed strongly in the developing nervous system, the brain, and in other mitotically active tissues. Vfl protein shows dynamic subcellular patterns during the cell cycle. In interphase nuclei, Vfl is associated with chromatin, whereas during mitosis, Vfl separates from chromatin and becomes distributed in a granular pattern in the nucleoplasm. Functional gain-of-function and lack-of-function studies show that vfl activity is necessary for normal mitotic cell divisions. Loss of vfl activity disrupts the pattern of mitotic waves in preblastoderm embryos, elicits asynchronous DNA replication, and causes improper chromosome segregation during mitosis.


Assuntos
Segregação de Cromossomos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genes de Insetos/genética , Genes Ligados ao Cromossomo X/genética , Proteínas Nucleares/genética , Dedos de Zinco/genética , Animais , Blastoderma/química , Blastoderma/ultraestrutura , Divisão Celular/genética , Núcleo Celular/química , Núcleo Celular/metabolismo , Replicação do DNA/genética , Proteínas de Drosophila/análise , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/embriologia , Desenvolvimento Embrionário/genética , Mitose/genética , Mutação , Proteínas Nucleares/análise , Proteínas Nucleares/metabolismo
4.
PLoS Genet ; 1(4): e55, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16254604

RESUMO

This article reports the production of an EP-element insertion library with more than 3,700 unique target sites within the Drosophila melanogaster genome and its use to systematically identify genes that affect embryonic muscle pattern formation. We designed a UAS/GAL4 system to drive GAL4-responsive expression of the EP-targeted genes in developing apodeme cells to which migrating myotubes finally attach and in an intrasegmental pattern of cells that serve myotubes as a migration substrate on their way towards the apodemes. The results suggest that misexpression of more than 1.5% of the Drosophila genes can interfere with proper myotube guidance and/or muscle attachment. In addition to factors already known to participate in these processes, we identified a number of enzymes that participate in the synthesis or modification of protein carbohydrate side chains and in Ubiquitin modifications and/or the Ubiquitin-dependent degradation of proteins, suggesting that these processes are relevant for muscle pattern formation.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas Genéticas , Músculos/metabolismo , Animais , Padronização Corporal , Ciclo Celular , Movimento Celular , Citoesqueleto/metabolismo , Genes de Insetos , Fibras Musculares Esqueléticas/metabolismo , Músculos/citologia , Músculos/patologia , Ubiquitina/metabolismo
5.
Curr Biol ; 14(3): 225-30, 2004 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-14761655

RESUMO

Slit, the ligand for the Roundabout (Robo) receptors, is secreted from midline cells of the Drosophila central nervous system (CNS). It acts as a short-range repellent that controls midline crossing of axons and allows growth cones to select specific pathways along each side of the midline. In addition, Slit directs the migration of muscle precursors and ventral branches of the tracheal system, showing that it provides long-range activity beyond the limit of the developing CNS. Biochemical studies suggest that guidance activity requires cell-surface heparan sulfate to promote binding of mammalian Slit/Robo homologs. Here, we report that the Drosophila homolog of Syndecan (reviewed in ), a heparan sulfate proteoglycan (HSPG), is required for proper Slit signaling. We generated syndecan (sdc) mutations and show that they affect all aspects of Slit activity and cause robo-like phenotypes. sdc interacts genetically with robo and slit, and double mutations cause a synergistic strengthening of the single-mutant phenotypes. The results suggest that Syndecan is a necessary component of Slit/Robo signaling and is required in the Slit target cells.


Assuntos
Movimento Celular/fisiologia , Proteínas de Drosophila , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteoglicanas/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais/fisiologia , Animais , Animais Geneticamente Modificados , Axônios/fisiologia , Drosophila , Hibridização In Situ , Fibras Musculares Esqueléticas/fisiologia , Sindecanas , Proteínas Roundabout
6.
Curr Biol ; 13(7): 603-6, 2003 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-12676093

RESUMO

In Drosophila, the masses and sheets of adipose tissue that are distributed throughout the fly are collectively called the fat body. Like mammalian adipocytes, insect fat body cells provide the major energy reserve of the animal organism. Both cell types accumulate triacylglycerols (TAG) in intracellular lipid droplets; this finding suggests that the strategy of energy storage as well as the machinery and the control to achieve fat storage might be evolutionarily conserved. Studies addressing the control of lipid-based energy homeostasis of mammals identified proteins of the PAT domain family, such as Perilipin, which reside on lipid droplets. Perilipin knockout mice are lean and resistant to diet-induced obesity. Conversely, Perilipin expression in preadipocyte tissue culture increases lipid storage by reducing the rate of TAG hydrolysis. Factors that mediate corresponding processes in invertebrates are still unknown. We examined the function of Lsd2, one of only two PAT domain-encoding genes in the Drosophila genome. Lsd2 acts in a Perilipin-like manner, suggesting that components regulating homeostasis of lipid-based energy storage at the lipid droplet membrane are evolutionarily conserved.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/genética , Drosophila/fisiologia , Corpo Adiposo/fisiologia , Animais , Northern Blotting , Proteínas de Transporte , Mapeamento Cromossômico , Proteínas de Drosophila/genética , Perfilação da Expressão Gênica , Perilipina-1 , Fosfoproteínas/fisiologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA