Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Cell ; 56(1): 140-52, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25240402

RESUMO

Nanog facilitates embryonic stem cell self-renewal and induced pluripotent stem cell generation during the final stage of reprogramming. From a genome-wide small interfering RNA screen using a Nanog-GFP reporter line, we discovered opposing effects of Snai1 and Snai2 depletion on Nanog promoter activity. We further discovered mutually repressive expression profiles and opposing functions of Snai1 and Snai2 during Nanog-driven reprogramming. We found that Snai1, but not Snai2, is both a transcriptional target and protein partner of Nanog in reprogramming. Ectopic expression of Snai1 or depletion of Snai2 greatly facilitates Nanog-driven reprogramming. Snai1 (but not Snai2) and Nanog cobind to and transcriptionally activate pluripotency-associated genes including Lin28 and miR-290-295. Ectopic expression of miR-290-295 cluster genes partially rescues reprogramming inefficiency caused by Snai1 depletion. Our study thus uncovers the interplay between Nanog and mesenchymal factors Snai1 and Snai2 in the transcriptional regulation of pluripotency-associated genes and miRNAs during the Nanog-driven reprogramming process.


Assuntos
Proteínas de Homeodomínio/fisiologia , Fatores de Transcrição/fisiologia , Animais , Sítios de Ligação , Diferenciação Celular/genética , Linhagem Celular , Regulação da Expressão Gênica , Células HEK293 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas , Camundongos , Proteína Homeobox Nanog , Regiões Promotoras Genéticas , Interferência de RNA , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
PLoS Pathog ; 13(1): e1006145, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28060952

RESUMO

The host factor and interferon (IFN)-stimulated gene (ISG) product, zinc-finger antiviral protein (ZAP), inhibits a number of diverse viruses by usurping and intersecting with multiple cellular pathways. To elucidate its antiviral mechanism, we perform a loss-of-function genome-wide RNAi screen to identify cellular cofactors required for ZAP antiviral activity against the prototype alphavirus, Sindbis virus (SINV). In order to exclude off-target effects, we carry out stringent confirmatory assays to verify the top hits. Important ZAP-liaising partners identified include proteins involved in membrane ion permeability, type I IFN signaling, and post-translational protein modification. The factor contributing most to the antiviral function of ZAP is TRIM25, an E3 ubiquitin and ISG15 ligase. We demonstrate here that TRIM25 interacts with ZAP through the SPRY domain, and TRIM25 mutants lacking the RING or coiled coil domain fail to stimulate ZAP's antiviral activity, suggesting that both TRIM25 ligase activity and its ability to form oligomers are critical for its cofactor function. TRIM25 increases the modification of both the short and long ZAP isoforms by K48- and K63-linked polyubiquitin, although ubiquitination of ZAP does not directly affect its antiviral activity. However, TRIM25 is critical for ZAP's ability to inhibit translation of the incoming SINV genome. Taken together, these data uncover TRIM25 as a bona fide ZAP cofactor that leads to increased ZAP modification enhancing its translational inhibition activity.


Assuntos
Infecções por Alphavirus/prevenção & controle , Antivirais/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sindbis virus/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Cricetinae , Células HEK293 , Humanos , Interferon Tipo I/metabolismo , Domínios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
3.
Proc Natl Acad Sci U S A ; 113(14): E2011-8, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27001857

RESUMO

Cullin-RING E3 ubiquitin ligases (CRL) control a myriad of biological processes by directing numerous protein substrates for proteasomal degradation. Key to CRL activity is the recruitment of the E2 ubiquitin-conjugating enzyme Cdc34 through electrostatic interactions between E3's cullin conserved basic canyon and the acidic C terminus of the E2 enzyme. This report demonstrates that a small-molecule compound, suramin, can inhibit CRL activity by disrupting its ability to recruit Cdc34. Suramin, an antitrypansomal drug that also possesses antitumor activity, was identified here through a fluorescence-based high-throughput screen as an inhibitor of ubiquitination. Suramin was shown to target cullin 1's conserved basic canyon and to block its binding to Cdc34. Suramin inhibits the activity of a variety of CRL complexes containing cullin 2, 3, and 4A. When introduced into cells, suramin induced accumulation of CRL substrates. These observations help develop a strategy of regulating ubiquitination by targeting an E2-E3 interface through small-molecule modulators.


Assuntos
Ligases/antagonistas & inibidores , Suramina/farmacologia , Relação Estrutura-Atividade
4.
BMC Bioinformatics ; 16: 225, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26198214

RESUMO

BACKGROUND: Chemical or small interfering (si) RNA screens measure the effects of many independent experimental conditions, each applied to a population of cells (e.g., all of the cells in a well). High-content screens permit a readout (e.g., fluorescence, luminescence, cell morphology) from each cell in the population. Most analysis approaches compare the average effect on each population, precluding identification of outliers that affect the distribution of the reporter in the population but not its average. Other approaches only measure changes to the distribution with a single parameter, precluding accurate distinction and clustering of interesting outlier distributions. RESULTS: We describe a methodology to identify outlier conditions by considering the cell-level measurements from each condition as a sample of an underlying distribution. With appropriate selection of a distance metric, all effects can be embedded in a fixed-dimensionality Euclidean basis, facilitating identification and clustering of biologically interesting outliers. We demonstrate that measurement of distances with the Hellinger distance metric offers substantial computational efficiencies over alternative metrics. We validate this methodology using an RNA interference (RNAi) screen in mouse embryonic stem cells (ESC) with a Nanog reporter. The methodology clusters effects of multiple control siRNAs into their true identities better than conventional approaches describing the median cell fluorescence or the commonly used Kolmogorov-Smirnov distance between the observed fluorescence distribution and the null distribution. It identifies outlier genes with effects on the reporter distribution that would have been missed by other methods. Among them, siRNA targeting Chek1 leads to a wider Nanog reporter fluorescence distribution. Similarly, siRNA targeting Med14 or Med27 leads to a narrower Nanog reporter fluorescence distribution. We confirm the roles of these three genes in regulating pluripotency by mRNA expression and alkaline phosphatase staining using independent short hairpin (sh) RNAs. CONCLUSIONS: Using our methodology, we describe each experimental condition by a probability distribution. Measuring distances between probability distributions permits a multivariate rather than univariate readout. Clustering points derived from these distances allows us to obtain greater biological insight than methods based solely on single parameters. We find several outliers from a mouse ESC RNAi screen that we confirm to be pluripotency regulators. Many of these outliers would have been missed by other analysis methods.


Assuntos
Biologia Computacional/métodos , Proteínas de Homeodomínio/genética , Interferência de RNA , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Análise por Conglomerados , Genes Reporter , Genoma , Complexo Mediador/antagonistas & inibidores , Complexo Mediador/genética , Complexo Mediador/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Proteína Homeobox Nanog , Regiões Promotoras Genéticas , RNA Interferente Pequeno/metabolismo , Tretinoína/farmacologia
5.
Nat Commun ; 15(1): 6534, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095390

RESUMO

Huntington's disease (HD) causes selective degeneration of striatal and cortical neurons, resulting in cell mosaicism of coexisting still functional and dysfunctional cells. The impact of non-cell autonomous mechanisms between these cellular states is poorly understood. Here we generated telencephalic organoids with healthy or HD cells, grown separately or as mosaics of the two genotypes. Single-cell RNA sequencing revealed neurodevelopmental abnormalities in the ventral fate acquisition of HD organoids, confirmed by cytoarchitectural and transcriptional defects leading to fewer GABAergic neurons, while dorsal populations showed milder phenotypes mainly in maturation trajectory. Healthy cells in mosaic organoids restored HD cell identity, trajectories, synaptic density, and communication pathways upon cell-cell contact, while showing no significant alterations when grown with HD cells. These findings highlight cell-type-specific alterations in HD and beneficial non-cell autonomous effects of healthy cells, emphasizing the therapeutic potential of modulating cell-cell communication in disease progression and treatment.


Assuntos
Doença de Huntington , Organoides , Fenótipo , Telencéfalo , Doença de Huntington/patologia , Doença de Huntington/genética , Doença de Huntington/metabolismo , Organoides/patologia , Organoides/metabolismo , Animais , Telencéfalo/patologia , Telencéfalo/citologia , Telencéfalo/metabolismo , Humanos , Camundongos , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Análise de Célula Única , Comunicação Celular , Mosaicismo , Neurônios/metabolismo , Neurônios/patologia
6.
Cell Rep Methods ; 2(12): 100367, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36590694

RESUMO

Stem cell engineering of striatal medium spiny neurons (MSNs) is a promising strategy to understand diseases affecting the striatum and for cell-replacement therapies in different neurological diseases. Protocols to generate cells from human pluripotent stem cells (PSCs) are scarce and how well they recapitulate the endogenous fetal cells remains poorly understood. We have developed a protocol that modulates cell seeding density and exposure to specific morphogens that generates authentic and functional D1- and D2-MSNs with a high degree of reproducibility in 25 days of differentiation. Single-cell RNA sequencing (scRNA-seq) shows that our cells can mimic the cell-fate acquisition steps observed in vivo in terms of cell type composition, gene expression, and signaling pathways. Finally, by modulating the midkine pathway we show that we can increase the yield of MSNs. We expect that this protocol will help decode pathogenesis factors in striatal diseases and eventually facilitate cell-replacement therapies for Huntington's disease (HD).


Assuntos
Neurônios Espinhosos Médios , Células-Tronco Pluripotentes , Humanos , Reprodutibilidade dos Testes , Neurogênese , Corpo Estriado , Células-Tronco Pluripotentes/metabolismo
7.
Science ; 372(6542)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33958447

RESUMO

Deciphering how the human striatum develops is necessary for understanding the diseases that affect this region. To decode the transcriptional modules that regulate this structure during development, we compiled a catalog of 1116 long intergenic noncoding RNAs (lincRNAs) identified de novo and then profiled 96,789 single cells from the early human fetal striatum. We found that D1 and D2 medium spiny neurons (D1- and D2-MSNs) arise from a common progenitor and that lineage commitment is established during the postmitotic transition, across a pre-MSN phase that exhibits a continuous spectrum of fate determinants. We then uncovered cell type-specific gene regulatory networks that we validated through in silico perturbation. Finally, we identified human-specific lincRNAs that contribute to the phylogenetic divergence of this structure in humans. This work delineates the cellular hierarchies governing MSN lineage commitment.


Assuntos
Atlas como Assunto , Corpo Estriado/citologia , Corpo Estriado/embriologia , Neurogênese/genética , RNA Longo não Codificante/genética , Análise de Célula Única , Fatores de Transcrição/genética , Feto , Neurônios GABAérgicos/metabolismo , Humanos , RNA-Seq , Transcrição Gênica
8.
J Cell Biol ; 162(4): 719-30, 2003 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-12925712

RESUMO

The function of adhesion receptors in both cell adhesion and migration depends critically on interactions with the cytoskeleton. During cell adhesion, cytoskeletal interactions stabilize receptors to strengthen adhesive contacts. In contrast, during cell migration, adhesion proteins are believed to interact with dynamic components of the cytoskeleton, permitting the transmission of traction forces through the receptor to the extracellular environment. The L1 cell adhesion molecule (L1CAM), a member of the Ig superfamily, plays a crucial role in both the migration of neuronal growth cones and the static adhesion between neighboring axons. To understand the basis of L1CAM function in adhesion and migration, we quantified directly the diffusion characteristics of L1CAM on the upper surface of ND-7 neuroblastoma hybrid cells as an indication of receptor-cytoskeleton interactions. We find that cell surface L1CAM engages in diffusion, retrograde movement, and stationary behavior, consistent with interactions between L1CAM and two populations of cytoskeleton proteins. We provide evidence that the cytoskeletal adaptor protein ankyrin mediates stationary behavior while inhibiting the actin-dependent retrograde movement of L1CAM. Moreover, inhibitors of L1CAM-ankyrin interactions promote L1CAM-mediated axon growth. Together, these results suggest that ankyrin binding plays a crucial role in the anti-coordinate regulation of L1CAM-mediated adhesion and migration.


Assuntos
Anquirinas/metabolismo , Citoesqueleto/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Actinas/metabolismo , Animais , Mutação , Molécula L1 de Adesão de Célula Nervosa/genética , Neuritos/metabolismo , Ratos
9.
Mol Biol Cell ; 17(6): 2696-706, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16597699

RESUMO

The growth of neuronal processes depends critically on the function of adhesion proteins that link extracellular ligands to the cytoskeleton. The neuronal adhesion protein L1-CAM serves as a receptor for nerve growth-promoting proteins, a process that is inhibited by the interaction between L1-CAM and the cytoskeleton adaptor ankyrin. Using a novel reporter based on intramolecular bioluminescence resonance energy transfer, we have determined that the MAP kinase pathway regulates the phosphorylation of the FIGQY motif in the adhesion protein L1-CAM and its interaction with ankyrin B. MAP kinase pathway inhibitors block L1-CAM-mediated neuronal growth. However, this blockade is partially rescued by inhibitors of L1-CAM-ankyrin binding. These results demonstrate that the MAP kinase pathway regulates L1-CAM-mediated nerve growth by modulating ankyrin binding, suggesting that nerve growth can be regulated at the level of individual receptors.


Assuntos
Anquirinas/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neuritos/fisiologia , Anquirinas/antagonistas & inibidores , Sítios de Ligação , Linhagem Celular Tumoral , Humanos , Neuroblastoma , Fosforilação
10.
J Neurosci Res ; 86(12): 2602-14, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18478542

RESUMO

An Ig superfamily cell-adhesion molecule, L1, forms an adhesion complex at the cell membrane containing both signaling molecules and cytoskeletal proteins. This complex mediates the transduction of extracellular signals and generates actin-mediated traction forces, both of which support axon outgrowth. The L1 cytoplasmic region binds ezrin, an adapter protein that interacts with the actin cytoskeleton. In this study, we analyzed L1-ezrin interactions in detail, assessed their role in generating traction forces by L1, and identified potential regulatory mechanisms controlling ezrin-L1 interactions. The FERM domain of ezrin binds to the juxtamembrane region of L1, demonstrated by yeast two-hybrid interaction traps and protein binding analyses in vitro. A lysine-to-leucine substitution in this domain of L1 (K1147L) shows reduced binding to the ezrin FERM domain. Additionally, in ND7 cells, the K1147L mutation inhibits retrograde movement of L1 on the cell surface that has been linked to the generation of the traction forces necessary for axon growth. A membrane-permeable peptide consisting of the juxtamembrane region of L1 that can disrupt endogenous L1-ezrin interactions inhibits neurite extension of cerebellar cells on L1 substrates. Moreover, the L1-ezrin interactions can be modulated by tyrosine phosphorylation of the L1 cytoplasmic region, namely, Y1151, possibly through Src-family kinases. Replacement of this tyrosine together with Y1176 with either aspartate or phenylalanine changes ezrin binding and alters colocalization with ezrin in ND7 cells. Collectively, these data suggest that L1-ezrin interactions mediated by the L1 juxtamembrane region are involved in traction-force generation and can be regulated by the phosphorylation of L1.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Tirosina/metabolismo , Células 3T3 , Animais , Sítios de Ligação/fisiologia , Membrana Celular/metabolismo , Proteínas do Citoesqueleto/fisiologia , Citoesqueleto/fisiologia , Espaço Extracelular/fisiologia , Humanos , Camundongos , Molécula L1 de Adesão de Célula Nervosa/fisiologia , Neuritos/fisiologia , Fosforilação/fisiologia , Ratos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA