Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Environ Sci Technol ; 58(8): 3654-3664, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38318812

RESUMO

How the plastisphere mediated by the residual microplastic film in farmlands affects microhabitat systems is unclear. Here, microbial structure, assembly, and biogeochemical cycling in the plastisphere and soil in 33 typical farmland sites were analyzed by amplicon sequencing of 16S rRNA genes and ITS and metagenome analysis. The results indicated that residual microplastic film was colonized by microbes, forming a unique niche called the plastisphere. Notable differences in the microbial community structure and function were observed between soil and plastisphere. Residual microplastic film altered the microbial symbiosis and assembly processes. Stochastic processes significantly dominated the assembly of the bacterial community in the plastisphere and soil but only in the plastisphere for the fungal community. Deterministic processes significantly dominated the assembly of fungal communities only in soil. Moreover, the plastisphere mediated by the residual microplastic film acted as a preferred vector for pathogens and microorganisms associated with plastic degradation and the nitrogen and sulfur cycle. The abundance of genes associated with denitrification and sulfate reduction activity in the plastisphere was pronouncedly higher than that of soil, which increase the potential risk of nitrogen and sulfur loss. The results will offer a scientific understanding of the harm caused by the residual microplastic film in farmlands.


Assuntos
Microbiota , Microplásticos , Fazendas , Plásticos , RNA Ribossômico 16S/genética , Nitrogênio , Solo , Enxofre
2.
J Fluoresc ; 32(1): 267-274, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34767129

RESUMO

Two compounds containing carbazole and sulfone groups with different alkyl chain lengths have been designed and synthesized. The sulfone group has strong absorption characteristics and the alkoxy chain and carbazole group are electron-rich, forming D-δ-A-type symmetrical molecules. The molecules have the characteristics of charge transfer and high thermal stability, and the molecules stack to form a layered staggered stack, reducing the intermolecular π-π interactions. The target compounds also exhibit strong ultraviolet-fluorescent emission in the solid state at room temperature, and they are expected to be good luminescent materials.

3.
Arch Environ Contam Toxicol ; 71(3): 365-76, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27421725

RESUMO

As a systematic research at basin scale, this study explored the composition and concentration characteristics of 16 priority polycyclic aromatic hydrocarbons (PAHs) in sediments, water, and suspended particulate matter (SPM) in the water systems (rivers, lakes, and reservoirs) in the Hai River Basin through literature review. The sources and the ecosystem risks of PAHs in the sediments in the entire basin were specially discussed with diagnostic ration, PAHs composition, and an improved risk quotient method. Results showed that the total concentration of PAHs varied from 99.65 to 25,303 ng g(-1) dry weight in sediments, from 51.0 to 559.1 ng L(-1) in water, and from 4528 to 51,080 ng g(-1) dry weight in SPM, respectively. The dominant PAHs in the three examined phases were 2-3 rings in most waterbodies. PAHs in the rivers were from mixed sources (petrogenic and pyrolytic inputs), whereas those in lakes and reservoirs were mainly from biomass combustion and petroleum combustion. PAHs in the entire basin exhibited moderate to high ecological risk, and the rivers (especially Hai River, Jiyun River, Chaobai River, and Beiyun River) suffered higher ecological risk than reservoirs and lakes. Most of the rivers with higher PAHs risk flow through or around megacity Beijing and Tianjin.


Assuntos
Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Rios/química , Poluentes Químicos da Água/análise , China , Medição de Risco , Poluição Química da Água/estatística & dados numéricos
4.
Environ Monit Assess ; 189(1): 10, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27928706

RESUMO

Historical distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) and their carriers (i.e., organic matter and mineral particles) in the sediment cores of the Yangtze Estuary were investigated, with emphasis laid on the role of the Yangtze River. Grain size component of sediments (clay, silt, and sand) and organic carbon (black carbon and total organic carbon) in the sediment cores were markedly affected by water flux and sediment discharge of the Yangtze River. Qualitative and quantitative analysis results showed that sands and black carbon acted as the main carriers of PAHs. The sedimentation of two-ring to three-ring PAHs in the estuary had significant correlations with water flux and sediment discharge of the Yangtze River. The relative lower level of the four-ring and five-ring to six-ring PAHs concentrations appeared around the year 2003 and remained for the following several years. This time period accorded well with the water impoundment time of the Three Gorges Reservoir. The decreased level of two-ring to three-ring PAHs occurred in the year 1994, and the peak points around the year 2009 indicated that PAHs sedimentation in the estuary also had close relationship to severe drought and flood in the catchments. The findings presented in this paper could provide references for assessing the impacts of water flux and sediment discharge on the historical deposition of PAHs and their carriers in the Yangtze Estuary.


Assuntos
Monitoramento Ambiental , Estuários , Sedimentos Geológicos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Rios , Água/análise , China , Movimentos da Água , Poluentes Químicos da Água/análise
5.
Environ Sci Technol ; 49(1): 474-80, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25436867

RESUMO

Electrospray mass spectrometry has been reported as a novel technique for Al species identification, but to date, the working mechanism is not clear and no unanimous method exists for spectrum analysis of traditional Al salt flocculants, let alone for analysis of polyaluminum chloride (PAC) flocculants. Therefore, this paper introduces a novel theoretical calculation method to identify Al species from a mass spectrum, based on deducing changes in m/z (mass-to-charge ratio) and molecular formulas of oligomers in five typical PAC flocculants. The use of reference chemical species was specially proposed in the method to guarantee the uniqueness of the assigned species. The charge and mass reduction of the Al cluster was found to proceed by hydrolysis, gasification, and change of hydroxyl on the oxy bridge. The novel method was validated both qualitatively and quantitatively by comparing the results to those obtained with the (27)Al NMR spectrometry.


Assuntos
Hidróxido de Alumínio/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Estudos de Viabilidade , Floculação , Hidrólise , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
6.
Ecotoxicol Environ Saf ; 107: 313-20, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25050536

RESUMO

Estrogens and veterinary antibiotics (VAs) that are contained in animal excrements are spread into agricultural soil when using animal wastes on farmland. The impacts of VAs on soil health have already been well documented. However, there is limited knowledge regarding the influence of estrogens, particularly the combined effects of estrogens and VAs, on the soil microbial community. In this study, a short-term analysis (11 days) of the effect of the estrogens estrone and 17ß-estradiol on soil microbial activity and on bacterial community structure was performed using a dehydrogenase activity (DHA) test and a PCR-denaturing gradient gel electrophoresis (DGGE) assay, respectively. Meanwhile, the potential influence of the VA sulfamethoxazole (SMX) as a co-pollutant on the effects of estrogens was examined. It was found that (1) estrone and 17ß-estradiol biodegraded within hours in non-sterilized soil, even in the presence of up to 100mg/kg SMX. (2) Estrone or 17ß-estradiol alone markedly promoted soil DHA and stimulated the growth of partial bacteria strains, which were demonstrated as new or more intensive bands in DGGE profiles relative to the control treatment at the later incubation period. (3) The presence of SMX as a co-pollutant at concentrations of 10 and 100mg/kg removed the stimulatory effects of estrogens on soil DHA and significantly reduced the DHA level to below the level of the untreated control. SMX also depressed the appearance of bacterial bands that were stimulated by estrone or 17ß-estradiol alone. Moreover, the coexistence of SMX and estrogens induced additional bacterial bands, which may be tolerant strains. Overall, these results imply that the load of estrogens might serve as nutrient substances for soil microorganisms, whereas VAs as co-pollutants would cause a shift of these positive effects toward a significant threat to the natural soil microbial community. Therefore, the removal of VAs in animal waste is essential to ensure the safe use of animal waste in agricultural land.


Assuntos
Estrogênios/farmacologia , Microbiota/efeitos dos fármacos , Microbiologia do Solo , Poluentes do Solo/toxicidade , Sulfametoxazol/toxicidade , Agricultura , Animais , Antibacterianos/toxicidade , Biodegradação Ambiental , Eletroforese em Gel de Gradiente Desnaturante , Interações Medicamentosas , Estradiol/metabolismo , Estradiol/farmacologia , Estrogênios/metabolismo , Estrona/metabolismo , Estrona/farmacologia , Oxirredutases/análise , Reação em Cadeia da Polimerase , Solo/química , Drogas Veterinárias/toxicidade
7.
Environ Pollut ; 360: 124652, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094999

RESUMO

Microplastics (MPs), which are widely dispersed in terrestrial environments, threaten crop growth and human food security. However, plant accumulation and phytotoxicity related to the size effects of MPs remain insufficiently explored. This study investigated the accumulation and toxicity of two sizes of MPs on Capsicum annuum Linn. (C. annuum) through fluorescence tracing and antioxidant defense system assessment. The results revealed that the size of MPs significantly impacts their accumulation characteristics in C. annuum roots, leading to variations in toxic mechanisms, including oxidative stress and damage. Smaller MPs and higher exposure concentrations result in more pronounced growth inhibition. C. annuum roots have a critical size threshold for the absorption of MPs of approximately 1.2 µm. MPs that enter the root tissue exhibit an aggregated form, with smaller-sized MPs displaying a greater degree of aggregation. MP exposure induces oxidative stress in root tissues, with high concentrations of smaller MPs causing lipid peroxidation. Analysis of the IBR values revealed that C. annuum roots utilize ascorbic acid (ASA) to prevent oxidative damage caused by larger MPs. Conversely, smaller MPs primarily induce superoxide dismutase (SOD) and glutathione (GSH). These results emphasize the significant impact of MP size on plant antioxidant defense response mechanisms, laying the foundation for further investigating the implications for human health.

8.
Chemosphere ; 357: 142041, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636919

RESUMO

Phthalate esters (PAEs) are widely prevalent in agricultural soil and pose potential risks to crop growth and food safety. However, the current understanding of factors influencing the behavior and fate of PAEs is limited. This study conducted a large-scale investigation (106 sites in 18 counties with 44 crop types) of 16 types of PAEs on a tropical island. Special attention was given to the impacts of land use type, soil environmental conditions, agricultural activity intensity, and urbanization level. The health risks to adults and children from soil PAEs via multiple routes of exposure were also evaluated. The results showed that the mean concentration of PAEs was 451.87 ± 284.08 µg kg-1 in the agricultural soil. Elevated agricultural and urbanization activities contributed to more pronounced contamination by PAEs in the northern and southern regions. Land use type strongly affected the concentration and composition of PAEs in agricultural soils, and the soil PAE concentration decreased in the order of vegetable fields, orchards, paddy fields, and woodlands. In paddy fields, di-isobutyl phthalate and di-n-butyl phthalate made more substantial contributions to the process through which the overlying water inhibited volatilization. Soil microplastic abundance, pesticide usage, crop yield, gross domestic product, and distance to the nearest city were calculated to be the major factors influencing the concentration and distribution of PAEs. Soil pH, organic matter content, microplastic abundance and the fertilizer application rate can affect the adsorption of PAEs by changing the soil environment. A greater risk was detected in the northern region and paddy fields due to the higher soil PAE concentrations and the dietary structure of the population. This study reveals important pathways influencing the sources and fate of PAE pollution in agricultural soils, providing fundamental data for controlling PAE contamination.


Assuntos
Agricultura , Monitoramento Ambiental , Ácidos Ftálicos , Poluentes do Solo , Solo , Poluentes do Solo/análise , Ácidos Ftálicos/análise , Solo/química , Medição de Risco , Ésteres/análise , Humanos , Ilhas
9.
Sci Total Environ ; 912: 169600, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38151126

RESUMO

The coexistence of multi-component dissolved organic chemicals causes tremendous challenge in purifying petrochemical wastewater, and stepwise selective adsorption holds the most promise for enhanced treatments. This study is designed to enhance the removal of multiple dissolved organic chemicals by stepwise adsorption. Special attention is given to the selective removal mechanisms for the major pollutant N,N-dimethylformamide (DMF), the sensitive pollutant fluorescent dissolved organic matter (FDOM) and other components. The results indicated that the combination of coal activated carbon and aluminum silica gel produced a synergistic effect and broke the limitation of removing only certain pollutants. Combined removal rates of 80.5 % for the dissolved organic carbon and 86.7 % for the biotoxicity in petrochemical wastewater were obtained with the enhanced two-step adsorption. The adsorption performance of both adsorbents remained stable even after five cycles. The selective adsorption mechanism revealed that hydrophobic organics such as DMF was adsorbed by the macropores of coal activated carbon, while the FDOM was eliminated by π-π stacking, electrostatic interaction and hydrophobic interaction. The hydrophilic organics were removed by the mesopores of aluminum silica gel, the silica hydroxyl groups and hydrophilic interaction. This study provides a comprehensive understanding of the selective adsorption mechanism and enhanced stepwise removal of multiple pollutants in petrochemical wastewater, which will guide the deep treatment of complex wastewater.

10.
Environ Sci Technol ; 47(22): 13039-46, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24164589

RESUMO

The electrochemical mineralization of environmentally persistent long-chain perfluorinated carboxylic acids (PFCAs), i.e., perfluorononanoic acid (C8F17COOH, PFNA) and perfluorodecanoic acid (C9F19COOH, PFDA) was investigated in aqueous solutions (0.25 mmol L(-1)) over Ti/SnO2-Sb-Ce (SnO2), Ti/SnO2-Sb/Ce-PbO2 (PbO2), and Ti/BDD (BDD) anodes under galvanostatic control at room temperature. Based on PFCA decay rate, total organic carbon (TOC) reduction, defluorination ratio, safety, and energy consumption, the performance of PbO2 electrode was comparable with that of BDD electrode. After 180 min electrolysis, the PFNA removals on BDD and PbO2 electrodes were 98.7 ± 0.4% and 97.1 ± 1.0%, respectively, while the corresponding PFDA removals were 96.0 ± 1.4% and 92.2 ± 1.9%. SnO2 electrode yielded lower PFCA removals and led to notable secondary pollution by Sb ions. The primary mineralization product, F(-), as well as trace amounts of intermediate PFCAs with shortened chain lengths, were detected in aqueous solution after electrolysis. On the basis of these results, a degradation mechanism including three potential routes is proposed: via formation of short-chain PFCAs by stepwise removal of CF2; direct mineralization to CO2 and HF; conversion to volatile fluorinated organic compounds. The results presented here demonstrate that electrochemical technique exhibits high efficiency in mineralizing PFNA and PFDA under mild conditions, and is promising for the treatment of long-chain PFCAs in wastewater.


Assuntos
Ácidos Decanoicos/química , Diamante/química , Técnicas Eletroquímicas/métodos , Fluorocarbonos/química , Chumbo/química , Minerais/química , Óxidos/química , Compostos de Estanho/química , Carbono/análise , Eletrodos , Eletrólise , Halogenação , Cinética , Oxirredução , Soluções , Fatores de Tempo , Poluentes Químicos da Água/química
11.
Sci Total Environ ; 857(Pt 1): 159431, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36244478

RESUMO

Asian clams (Corbicula fluminea) have been extensively applied in biomonitoring and other environmental fields based on their high enrichment capacity and rapid response to pollutants. This review first summarizes the kinetic process of metals and organic pollutants enriched by C. fluminea and discusses the environmental behavior and application. The accumulation ability of Cu, Zn, and Mn were significantly higher than that of other metals, which were attributed to their high uptake rate constant and low elimination rate constant. The visceral mass was found to be the major burden tissue. However, large knowledge gaps existed regarding the accumulation capacity of C. fluminea for organic pollutants and nanoparticles. Moreover, physiological mechanisms underlying the accumulation of environmental pollutants were proposed. C. fluminea can improve the niche of benthic algae by ingesting pelagic algae, mitigating water eutrophication. It can also remove pathogens and parasites based on the biological assimilation of nonspecific immunity, interrupting disease transmission. The novel insight into the application of C. fluminea in wastewater treatment further broadens the range of pest management strategies and offers the feasibility of blocking the spread of invasive bivalves.


Assuntos
Corbicula , Poluentes Químicos da Água , Animais , Corbicula/fisiologia , Poluentes Químicos da Água/análise , Água Doce , Metais , Água
12.
J Hazard Mater ; 448: 130978, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36860083

RESUMO

The occurrence of microplastics (MPs) and even nanoplastics (NPs) in tap water has raised considerable attention. As a pre-treatment and also the most important process in drinking water treatment plants, coagulation has been widely studied to remove MPs, but few studies focused on the removal pattern and mechanism of NPs, especially no study paid attention to the coagulation enhanced by prehydrolysed Al-Fe bimetallic coagulants. Therefore, in this study, polymeric species and coagulation behaviour of MPs and NPs influenced by Fe fraction in polymeric Al-Fe coagulants were investigated. Special attention was given to the residual Al and the floc formation mechanism. The results showed that asynchronous hydrolysis of Al and Fe sharply decreases the polymeric species in coagulants and that the increase of Fe proportion changes the sulfate sedimentation morphology from dendritic to layered structures. Fe weakened the electrostatic neutralization effect and inhibited the removal of NPs but enhanced that of MPs. Compared with monomeric coagulants, the residual Al decreased by 17.4 % and 53.2 % in the MP and NP systems (p < 0.01), respectively. With no new bonds detected in flocs, the interaction between micro/nanoplastics and Al/Fe was merely electrostatic adsorption. According to the mechanism analysis, sweep flocculation and electrostatic neutralization were the dominant removal pathways of MPs and NPs, respectively. This work provides a better coagulant option for removing micro/nanoplastics and minimizing Al residue, which has promising potential for application in water purification.

13.
J Hazard Mater ; 443(Pt A): 130175, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36279649

RESUMO

The successful preparation and identification of Keggin-structure Fe13 clusters in recent years further enriched the potential application scenarios of ferric coagulants. Comparing the coagulation efficiencies and mechanisms of Fe13 in the removal of nano/microplastics with conventional polymeric Al13 and monomeric Al/Fe, this work aimed to elucidate the coagulation behaviour of Fe13 compared with the traditional mono ferric coagulant, which has the coagulation applied bottleneck of quick and violet hydrolysis. The results showed that Fe13 has a similar electrostatic neutralization potential to Al13, which could keep a positively charged species, especially in acid conditions. The Fe13 species has a selective removal potential toward the microplastics with a polar functional group like ester. Moreover, Fe13 could hydrolyze to form active sol-gel hydroxides in neutral and alkalinity conditions, which is like the behaviour of traditional monomeric Fe coagulants but seldom restabilization. The electrostatic neutralization of Fe13 could enhance the removal of nano plastic from - 25-75% compared with monomeric Fe at pH 4. The higher floc density as a monomeric Fe coagulant and better electrostatic neutralization potential of Keggin Fe13 posed a good prospect for Fe13 to replace the monomeric Fe coagulants in conventional coagulation.

14.
J Hazard Mater ; 445: 130637, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-37056009

RESUMO

Extending the lifetime of granular activated carbon (GAC) filters with no significant loss in their effectiveness is a considerable challenge for drinking water supply utilities. However, the effects of residual Al from coagulants on GAC performance are rarely considered. Herein, in-service GAC samples obtained from full-scale water treatment plants were investigated to evaluate the amount of accumulated Al. Although the Al concentration in water was two to three times lower than the Ca concentration, Al exhibited considerable accumulation (second to Ca accumulation) in in-service GAC samples (0.68-8.63 mg g-1). Surface characterization results indicated that Al accumulation could have been caused by the co-precipitation of Al with Ca and Si to form Ca4Al2Si3O10·H2O and Ca4Al6O12SO4, self-precipitation or complexion with -OH/-COOH on the GAC or biofilm surfaces. Correlation analysis of the accumulated Al and GAC properties implied that Al accumulation considerably reduced the surface area of GAC by ∼30%. Lab simulation experiments indicated that the removal of dissolved organic matter was reduced by 6-10% when additional Al was loaded. In addition, results showed that the residual Al (up to 200 µg L-1) considerably affected the extracellular polymeric substance component and microorganism community structure. In summary, strict control of residual Al is beneficial for maintaining the efficacies of GAC and biologically activated carbon.

15.
Sci Total Environ ; 874: 162426, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36842590

RESUMO

Microplastics (MPs) are ubiquitous in agricultural soils, but to what extent and how environmental factors determine the source and fate of MPs in agricultural soils is not clear. In this study, Hainan Island, which has different climatic conditions, altitudes, and land uses across the island, was selected to investigate the MPs abundance and the shape, size, color, and polymer type of the MPs in agricultural soils. The main focus was on the role of land use type and the identification of environmental influencing factors. The results showed that MPs were detected in all the soil samples across the island, with an abundance range of 20 to 6790 items kg-1 and an average of 417 items kg-1. Fragments (46.8 %), MPs smaller than 0.5 mm (37.8 %), black MPs (48.3 %), and polypropylene MPs (56.8 %) were observed as the dominant MPs species. Significantly higher MPs abundance was found in mulched arable land, and higher contents of fibers and fragments were observed in woodland and paddy lands, respectively. With correlation and redundancy analyses, soil pH, soil organic matter content, and average annual temperature were found to be the main factors influencing the biotic/abiotic fragmentation of MPs. The regional population density, including tourism represented by the night light index, affects the input process of MPs. MPs transport and deposition were found to be affected by altitude, annual precipitation, and soil moisture content. This study represents the first large-scale study of MPs contamination in island agricultural soils and provides important data on the distribution, transport, and fate of MPs.

16.
Environ Monit Assess ; 184(8): 5035-41, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21915602

RESUMO

Concentrated animal feeding operations have been recognized as one of the most important contributors of natural estrogens which show significant endocrine-disrupting properties in aquatic environments. In this study, the concentrations of 17α-estradiol (17α-E2), 17ß-estradiol (17ß-E2), estrone (E1), and estriol (E3) in several matrices, including soils (surface and deep), sediments (surface and deep), and groundwaters, around a typical dairy farm were surveyed using gas chromatography/mass spectrometry. Of the two farmlands, surface and subsurface sediments in waste lagoon and along effluent drainage drench, the concentrations of 17α-E2, 17ß-E2, and E1 ranged from below detection limit to the highest level of 6.60 µg/kg, except that E3 was not detectable. Three estrogens of 17α-E2, 17ß-E2, and E1 with the concentrations of 3.18-31.61 ng/L were observed in two groundwater samples. The results clearly demonstrated the vertical migration and horizontal transport of estrogens in the investigated area. Within 750-m distance, it was observed the attenuation of 17α-E2, 17ß-E2, and E1 along the effluent route and the horizontal migration of estrogens was less than 1,350 m in this survey.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais/análise , Estrogênios/análise , Indústria de Laticínios , Disruptores Endócrinos/análise , Estradiol/análise , Estriol/análise , Estrona/análise , Água Subterrânea/química , Cinética , Modelos Químicos , Solo/química
17.
Environ Sci Pollut Res Int ; 29(16): 23700-23711, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34811616

RESUMO

Antibiotic toxicity and antibiotic resistance have become significant challenges to human health. However, the potential ecotoxicity of sediment-associated antibiotics remains unknown. In this study, biochemical responses, histological changes, and behavioral responses of Corbicula fluminea exposed to sediment-associated ciprofloxacin (CIP) were systemically investigated. Special attention was paid to the influence of different substrate types. Biochemical analyses revealed that the balance of the antioxidant system was disrupted, eventually leading to oxidative damage to the gills and digestive gland with increasing CIP concentration. Severe histopathological changes appeared along with the oxidative damage. An enlargement of the tubule lumen and thinning of the epithelium in the digestive gland were observed under exposure to high CIP concentrations (0.5 and 2.5 µg/g CIP). In a behavioral assay, the filtration rate of C. fluminea in high concentration exposure groups was clearly inhibited. Moreover, from the integrated biomarker response (IBR) index, the toxicity response gradients of the digestive gland (no substrate--NOS > Sand > Sand and kaolinite clay-- SKC > Sand, kaolinite clay, and organic matter--SCO) and gills (NOS > SCO > SKC > Sand) were different among substrate exposure groups. The most serious histopathological damage and highest siphoning inhibition were observed in the NOS group. The changes in the morphological structure of digestive gland cells in C. fluminea were similar in the other three substrate groups. The inhibition of the filtration rate in the higher concentration groups decreased in the order Sand > SKC > SCO.


Assuntos
Corbicula , Poluentes Químicos da Água , Animais , Ciprofloxacina/análise , Brânquias/metabolismo , Humanos , Estresse Oxidativo , Poluentes Químicos da Água/análise
18.
Environ Pollut ; 306: 119392, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35513196

RESUMO

The environmental behavior of microplastics (MPs) in estuaries with saline and freshwater intersections is extremely complex. This increases the chance of MP ingestion by fishery resources, posing potentially tremendous health risks for humans. Herein, a total of 105 fishes from 14 different species, and 86 crustaceans (including shrimps and crabs) from five different species were sampled in the Yangtze River estuary and offshore, and MP bioaccumulation, accumulative organ, and the influencing factors were comprehensively studied. The results elucidated that MP accumulation in benthos was significantly higher than that in pelagic animals due to the lower acceptance threshold, assimilation efficiency and egestion rate for benthos. The MP content in crustaceans with the burrowing favoring the MP retention was significantly higher than that in fishes. MPs ingested by fish can accumulate in skin, gills and viscera rather than muscles. Most MPs accumulated in fishery resources were cellulose and polyethylene terephthalate characterized by black and gray fibrous and lengths ranging from 0.1 mm to 1 mm. The gill retention capacity of pelagic fish to smaller-size (<0.1 mm) MPs was pronouncedly stronger than that of benthic fish. It was more accurate to assess the ecological risk of MPs in terms of the maximum size of MPs accumulated in organisms. Compared with the offshore area, the incidence of MP uptake was higher in the estuary owing to anthropogenic impacts. This study helps understand the transfer of MPs in aquatic food webs and offers a foundation for assessing the risk of human exposure to MPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Bioacumulação , Monitoramento Ambiental/métodos , Estuários , Pesqueiros , Peixes , Plásticos , Poluentes Químicos da Água/análise
19.
Sci Total Environ ; 754: 142154, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254923

RESUMO

Lacking consolidated qualitative and quantitative analysis methods of Al nanoclusters in aqueous, the distributions and concentrations of each Al species could not be revealed with single method before or after coagulation, which limited the development of environmental Al clusters control. As the ESI-MS applied in the inorganic cluster's identification tentatively, the deficient identification of Al species could be analyzed qualitatively and quantitatively with mass spectrum directly. Although many studies have applied the ESI-MS to analyze Al species in aqueous, the experimental conditions were not compared and not reached an agreement. Therefore, this work is the first study to review the methodology developments of ESI-MS in Al identification and to summarize the qualitative and quantitative analysis promoted by ESI-MS. The principle and rationality of quantitative ESI-MS method were inducted and discussed from the prospects of resolving mass spectrum assignment and transforming species in ionization. The qualitative ESI-MS results in previous studies were also analyzed by quantitative ESI-MS analysis in this work. The quantitative Al species results are accordant with the distribution results concluded via Al-Ferron and 27Al NMR methods. The identification principles and instrumental parameters were summarized and unified, which would give hints to further methodological applications and modifications. This study puts forward the further possibilities and prospects of ESI-MS applied in the transformation and in-situ identification of Al13 nanocluster in aqueous.

20.
ACS Nano ; 15(6): 9469-9481, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33988023

RESUMO

With the wide application of plastics in daily life, nanoplastics (NPs) are ubiquitous in freshwater environments. However, to date, few studies have focused on the mechanism underlying the toxicity of NPs, and the differences between this mechanism and that governing the toxicity of MPs have also not been thoroughly characterized. In this study, the genotoxicity, intestinal damage, and intestinal flora in Corbicula fluminea exposed to micro/nanoplastics were investigated through RNA sequencing, histopathology, and 16S rRNA sequencing, respectively. Significant differences in differentially expressed genes (DEGs) were observed between MP and NP exposure groups. It was observed that NPs preferentially elicited the process related to cellular components and triggered the apoptosis through the mitochondrial pathway in various tissues, especially in indirectly contacted tissues, while MPs induced the innate immune response and activated the complement and coagulation cascades (complement system) pathway. Both MPs and NPs can induce an inflammatory response and cause epithelial damage in the intestines, and they can notably change the gut microbial community structure. However, the abundance of pathogenic bacteria (e.g., Mycoplasma) was observed to increase only in the MP-treated group, which exacerbated intestinal damage. Unlike MPs, the effect of NPs on the intestinal microflora was highly limited, while NPs elicited more severe damage to the intestinal mucosal barrier. The results of this study may help to elucidate the toxicity mechanisms governing the responses of bivalves to MPs and NPs and to evaluate the detriment of MPs and NPs to the benthic ecosystem.


Assuntos
Corbicula , Poluentes Químicos da Água , Animais , Ecossistema , Água Doce , Microplásticos , Plásticos , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA