Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Biol Lett ; 29(1): 40, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38528461

RESUMO

Ferroptosis, a therapeutic strategy for tumours, is a regulated cell death characterised by the increased accumulation of iron-dependent lipid peroxides (LPO). Tumour-associated long non-coding RNAs (lncRNAs), when combined with traditional anti-cancer medicines or radiotherapy, can improve efficacy and decrease mortality in cancer. Investigating the role of ferroptosis-related lncRNAs may help strategise new therapeutic options for breast cancer (BC). Herein, we briefly discuss the genes and pathways of ferroptosis involved in iron and reactive oxygen species (ROS) metabolism, including the XC-/GSH/GPX4 system, ACSL4/LPCAT3/15-LOX and FSP1/CoQ10/NAD(P)H pathways, and investigate the correlation between ferroptosis and LncRNA in BC to determine possible biomarkers related to ferroptosis.


Assuntos
Ferroptose , Neoplasias , RNA Longo não Codificante , Ferroptose/genética , RNA Longo não Codificante/genética , Ferro , Peróxidos Lipídicos , Espécies Reativas de Oxigênio
2.
Foodborne Pathog Dis ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38527171

RESUMO

Salmonella is a globally prevalent foodborne bacterium, and ceftriaxone and azithromycin have been regarded as drugs of choice for treating Salmonella infections, particularly in children. With the growing incidence of ceftriaxone and azithromycin resistance in Salmonella, there is an urgent requirement for a rapid and dependable gene testing approach to enhance the efficacy of treating Salmonella infections. Utilizing the orange to green visible dye approach, this study developed loop-mediated isothermal amplification (LAMP) assays for the sensitive and specific detection of Salmonella, ceftriaxone and azithromycin resistance genes (including CTX-M-1 group, mph(A), and ermB genes) in stool and blood samples. The specificity and sensitivity of primers during the LAMP assays for detection of Salmonella, CTX-M-1 group, mph(A), and ermB genes were determined in this study. The detection threshold for Salmonella was found to be 1.5 × 103 colony-forming units (CFU)/mL, while it was 1.5 × 102 CFU/mL for CTX-M-1 group genes (including blaCTX-M-3, blaCTX-M-15, and blaCTX-M-55), 1.5 × 102 CFU/mL for mph(A), and 1.5 × 102 CFU/mL for ermB, showing 10-103-fold, 103-fold, and 105-fold increased sensitivity compared with the polymerase chain reaction assay, respectively. Results indicated that the LAMP primers designed for Salmonella, CTX-M-1 group, mph(A), and ermB genes possess high specificity (100%) and sensitivity (over 94%). This novel approach advocates its application in detecting Salmonella, CTX-M-1 group, mph(A), and ermB genes.

3.
Clin Chem ; 68(2): 332-343, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942001

RESUMO

BACKGROUND: Although major advances have been made in the histopathological diagnosis of high-grade astrocytoma (HGA), methods for effective and noninvasive diagnosis remain largely unknown. Exosomes can cross the blood-brain barrier and are readily accessible in human biofluids, making them promising biomarkers for HGA. Circular RNAs (circRNAs) have potential as tumor biomarkers owing to their stability, conservation, and tissue specificity. However, the landscape and characteristics of exosome circRNAs in HGA remain to be studied. METHODS: CircRNA deep sequencing and bioinformatics approaches were used to generate a circRNA profiling database and analyze the features of HGA cell circRNAs and HGA cell-derived exosome circRNAs. Exosome circRNA expression in the serum and tissues of healthy individuals and patients with HGA was detected using reverse transcription-quantitative PCR. Additionally, the receiver operating characteristic curve and overall survival curves were analyzed. RESULTS: By investigating the characteristics of HGA cell-derived exosome circRNAs and HGA cell circRNAs, we observed that exosomes were more likely to enrich short-exon and suppressor circRNAs than HGA cells. Moreover, a serum exosome circRNA panel including hsa_circ_0075828, hsa_circ_0003828, and hsa_circ_0002976 could be used to screen for HGA, whereas a good prognosis panel comprised high concentrations of hsa_circ_0005019, hsa_circ_0000880, hsa_circ_0051680, and hsa_circ_0006365. CONCLUSIONS: This study revealed a comprehensive circRNA landscape in HGA exosomes and cells. The serum exosome circexosome circRNA panel and tissue circRNAs are potentially useful for HGA liquid biopsy and prognosis monitoring. Exosome circRNAs as novel targets should facilitate further biomarker discovery and aid in HGA diagnosis and therapy monitoring.


Assuntos
Astrocitoma , Exossomos , Astrocitoma/diagnóstico , Astrocitoma/genética , Biomarcadores Tumorais/genética , Exossomos/genética , Humanos , RNA/genética , RNA Circular/genética , Análise de Sequência de RNA
4.
Mol Med ; 27(1): 44, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33932995

RESUMO

BACKGROUND: Leucine rich repeat containing 4 (LRRC4), also known as netrin-G ligand-2 (NGL-2), belongs to the superfamily of LRR proteins and serves as a receptor for netrin-G2. LRRC4 regulates the formation of excitatory synapses and promotes axon differentiation. Mutations in LRRC4 occur in Autism Spectrum Disorder (ASD) and intellectual disability. Multiple sclerosis (MS) is a chronic neuroinflammatory disease with spinal cords demyelination and neurodegeneration. Here, we sought to investigate whether LRRC4 is involved in spinal cords neuron-associated diseases. METHODS: LRRC4 was detected in the CNS of experimental autoimmune encephalomyelitis (EAE) mice by the use of real-time PCR and western blotting. LRRC4-/- mice were created and immunized with myelin oligodendrocyte glycoprotein peptide (MOG)35-55. Pathological changes in spinal cords of LRRC4-/- and WT mice 15 days after immunization were examined by using hematoxylin and eosin (H&E), Luxol Fast Blue (LFB) staining and immunohistochemistry. The number of Th1/Th2/Th17/Treg cells in spleens and blood were measured with flow cytometry. Differential gene expression in the spinal cords from WT and LRRC4-/- mice was analyzed by using RNA sequencing (RNA-seq). Adeno-associated virus (AAV) vectors were used to overexpress LRRC4 (AAV-LRRC4) and were injected into EAE mice to assess the therapeutic effect of AAV-LRRC4 ectopic expression on EAE. RESULTS: We report that LRRC4 is mainly expressed in neuron of spinal cords, and is decreased in the spinal cords of the EAE mice. Knockout of LRRC4 have a disease progression quickened and exacerbated with more severe myelin degeneration and infiltration of leukocytes into the spinal cords. We also first found that Rab7b is high expressed in EAE mice, and the deficiency of LRRC4 induces the elevated NF-κB p65 by up-regulating Rab7b, and up-regulation of IL-6, IFN-γ and down-regulation of TNF-α, results in more severe Th1 immune response in LRRC4-/- mice. Ectopic expression of LRRC4 alleviates the clinical symptoms of EAE mice and protects the neurons from immune damages. CONCLUSIONS: We identified a neuroprotective role of LRRC4 in the progression of EAE, which may be used as a potential target for auxiliary support therapeutic treatment of MS.


Assuntos
Encefalomielite Autoimune Experimental/genética , Proteínas do Tecido Nervoso/genética , Animais , Citocinas/genética , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neuroproteção , Proteínas Proto-Oncogênicas c-akt/metabolismo , Medula Espinal/metabolismo
5.
Org Biomol Chem ; 14(29): 6951-4, 2016 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-27375278

RESUMO

A general and efficient methodology for preparing primary sulfonamides has been developed. In the presence of iodine as the catalyst and TBHP (70% in water) as the oxidant, a wide range of primary sulfonamides were prepared from the corresponding thiols and aqueous ammonia in moderate to good yields.

6.
Neurol Sci ; 37(7): 1039-47, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26971324

RESUMO

N-methyl-D-aspartate receptors (NMDARs) play a pivotal role in the synaptic transmission and synaptic plasticity thought to underlie learning and memory. NMDARs activation has been recently implicated in Alzheimer's disease (AD) related to synaptic dysfunction. Synaptic NMDARs are neuroprotective, whereas overactivation of NMDARs located outside of the synapse cause loss of mitochondrial membrane potential and cell death. NMDARs dysfunction in the glutamatergic tripartite synapse, comprising presynaptic and postsynaptic neurons and glial cells, is directly involved in AD. This review discusses that both beta-amyloid (Aß) and tau perturb synaptic functioning of the tripartite synapse, including alterations in glutamate release, astrocytic uptake, and receptor signaling. Particular emphasis is given to the role of NMDARs as a possible convergence point for Aß and tau toxicity and possible reversible stages of the AD through preventive and/or disease-modifying therapeutic strategies.


Assuntos
Doença de Alzheimer/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Humanos , Receptores de N-Metil-D-Aspartato/genética , Sinapses/metabolismo , Sinapses/patologia , Proteínas tau/metabolismo
7.
Chemistry ; 21(46): 16370-3, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26406903

RESUMO

A novel palladium-catalyzed CO-gas- and autoclave-free protocol for the synthesis of 11H-pyrido[2,1-b]quinazolin-11-ones has been developed. Quinazolinones, which are omnipresent motif in many pharmaceuticals and agrochemicals, were prepared in good yields by C-H bond activation and annulation using DMF as the CO surrogate. A (13) CO-labelled DMF control experiment demonstrated that CO gas was released from the carbonyl of DMF with acid as the promotor. The kinetic isotope effect (KIE) value indicated that the C-H activation step may not be involved in the rate-determining step. This methodology is operationally simple and showed a broad substrate scope with good to excellent yields.

8.
Org Biomol Chem ; 13(43): 10656-62, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26340511

RESUMO

A convenient procedure for the synthesis of quinazolinimines and quinazolinamines from 2-fluorobenzonitriles has been developed. By using KO(t)Bu as the promotor with 2-aminopyridines or amidines as the reaction partner, the desired heterocycles were produced in moderate to good yields under catalyst-free conditions.

9.
Org Biomol Chem ; 12(38): 7486-8, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25156588

RESUMO

An interesting procedure for the oxidative cleavage of benzylic C-N bonds has been developed. Using TBAI as the catalyst and H2O2 as the oxidant, various benzylamines were transformed into their corresponding aromatic aldehydes in moderate to good yields. Notably, this is the first example of an oxidative cleavage of benzylic C-N bonds under metal-free conditions.

10.
Aging (Albany NY) ; 16(8): 7174-7187, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38669103

RESUMO

Glioma is the most frequently diagnosed primary brain tumor and typically has a poor prognosis because of malignant proliferation and invasion. It is urgent to elucidate the mechanisms driving glioma tumorigenesis and develop novel treatments to address this deadly disease. Here, we first revealed that PDZK1 is expressed at high levels in gliomas. Promoter hypomethylation may cause high expression of PDZK1 in glioma. Knockdown of PDZK1 inhibits glioma cell proliferation and invasion in vitro. Mechanistically, further investigations revealed that the loss of PDZK1 expression by siRNA inhibited the activation of the AKT/mTOR signaling pathway, leading to cell cycle arrest and apoptosis. Clinically, high expression of PDZK1 predicts a poorer prognosis for glioma patients than low expression of PDZK1. Overall, our study revealed that PDZK1 acts as a novel oncogene in glioma by binding to AKT1 and maintaining the activation of the AKT/mTOR signaling pathway. Thus, PDZK1 may be a potential therapeutic target for glioma.


Assuntos
Neoplasias Encefálicas , Metilação de DNA , Glioma , Proteínas de Membrana , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt , Humanos , Masculino , Apoptose/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética
11.
J Nanosci Nanotechnol ; 13(1): 394-400, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23646744

RESUMO

The tensile deformation behavior of silver (Ag) wires with nanometer widths (nanowires (NWs)) was observed by in situ high-resolution transmission electron microscopy combined with subnanonewton force measurements. The Young's modulus, strength, and critical shear stress of the Ag NWs were investigated based on the mechanics of materials at the atomic scale. It was found that when the minimum cross-sectional area of the NWs decreased to less than approximately 3.2 nm2, the critical shear stress increased with a decrease in the area. In addition, when the minimum cross-sectional area decreased to less than approximately 0.5 nm2 before fracture, the critical shear stress reached 0.96 GPa, which exceeded the theoretical shear stress of bulk Ag crystals on {1111} along (110). The present results indicate that the deformation mechanism of Ag NWs transformed from dislocation-mediated slip to homogeneous slip. Therefore, it can be concluded that size reduction to nanometer scale leads to a considerable increase in strength.


Assuntos
Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Modelos Químicos , Prata/química , Força Compressiva , Simulação por Computador , Módulo de Elasticidade , Teste de Materiais , Resistência ao Cisalhamento , Resistência à Tração
12.
Adv Ther ; 40(11): 4945-4956, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37715852

RESUMO

INTRODUCTION: This study examined the cost-effectiveness of first-line toripalimab plus chemotherapy (TC) for patients with advanced non-small cell lung cancer (NSCLC), excluding patients with nonsquamous NSCLC and EGFR/ALK mutations. It further analyzed the cost-effectiveness of this strategy in biomarker-based subgroups, all within the context of the Chinese healthcare system. METHODS: Eighteen Markov models with 21-day Markov cycle lengths and 30-year time horizons were constructed in this study. Clinical effectiveness data were derived from the CHOICE-01 trial. Health state utilities and costs data were obtained from various sources. The primary outputs were the calculation of incremental cost-effectiveness ratios (ICERs), which were then compared to a willingness-to-pay (WTP) threshold of $17,961 per quality-adjusted life-year (QALY). This comparison was used to determine the treatment that offered greater cost-effectiveness. To account for uncertainty in the model, sensitivity analyses were conducted. RESULTS: For the overall patient population, the estimated ICER between first-line TC and placebo plus chemotherapy (PC) was $9445/QALY, significantly lower than the WTP threshold used in the model. In subgroups based on pathologic types, first-line TC had an ICER of $16,757/QALY for patients with nonsquamous NSCLC, slightly below the WTP threshold; first-line TC demonstrated dominance in patients with squamous NSCLC, indicating both better effectiveness and lower costs compared to first-line PC. In biomarkers-based subgroups, first-line TC was dominant over first-line PC in the subgroups with programmed cell death ligand 1 (PD-L1) expression ≥ 50% and SMARCA4 mutations. Moreover, first-line TC had ICERs lower than the WTP threshold in other subgroups, except for the subgroup with RB1 mutations. Sensitivity analysis confirmed the robustness of these findings. CONCLUSION: From the perspective of the Chinese healthcare system, this study's findings suggested that first-line TC represents a cost-effective strategy for patients with advanced NSCLC. However, the cost-effectiveness of first-line TC varied across different subgroups when considering predictive biomarkers.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/epidemiologia , Análise Custo-Benefício , Neoplasias Pulmonares/tratamento farmacológico , Anticorpos Monoclonais Humanizados/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica , DNA Helicases , Proteínas Nucleares/uso terapêutico , Fatores de Transcrição/uso terapêutico
13.
Oncogene ; 42(44): 3236-3251, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37717099

RESUMO

Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer-related death among females. Metastasis accounts for the majority of BC related deaths. One feasible strategy to solve this challenging problem is to disrupt the capabilities required for tumor metastasis. Herein, we verified a novel metastasis suppressive circRNA, circPOKE in BC. circPOKE was downregulated in primary and metastatic BC tissues and overexpression of circPOKE inhibited the metastatic potential but not the proliferative ability of BC cells in vitro and in vivo. Mechanistically, circPOKE competitively binds to USP10, and reduces its binding to Snail, a key transcriptional regulator of EMT, thereby inhibiting Snail stability via the protein-ubiquitination degradation pathway. In addition, we found that circPOKE could be secreted into the extracellular space via exosomes and that exosome-carried circPOKE significantly inhibited the invasive capabilities of BC cells in vitro and in vivo. Furthermore, the levels of circPOKE, USP10 and Snail are clinically relevant in BC, suggesting that circPOKE may be used as a potential therapeutic target for patients with BC metastasis.


Assuntos
Neoplasias da Mama , Melanoma , MicroRNAs , Neoplasias Cutâneas , Feminino , Humanos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Melanoma/genética , Neoplasias Cutâneas/genética , Regulação Neoplásica da Expressão Gênica , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , Metástase Neoplásica , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Melanoma Maligno Cutâneo
14.
Cancers (Basel) ; 14(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36497453

RESUMO

Phase separation is now acknowledged as an essential biologic mechanism wherein distinct activated molecules assemble into a different phase from the surrounding constituents of a cell. Condensates formed by phase separation play an essential role in the life activities of various organisms under normal physiological conditions, including the advanced structure and regulation of chromatin, autophagic degradation of incorrectly folded or unneeded proteins, and regulation of the actin cytoskeleton. During malignant transformation, abnormally altered condensate assemblies are often associated with the abnormal activation of oncogenes or inactivation of tumor suppressors, resulting in the promotion of the carcinogenic process. Thus, understanding the role of phase separation in various biological evolutionary processes will provide new ideas for the development of drugs targeting specific condensates, which is expected to be an effective cancer therapy strategy. However, the relationship between phase separation and cancer has not been fully elucidated. In this review, we mainly summarize the main processes and characteristics of phase separation and the main methods for detecting phase separation. In addition, we summarize the cancer proteins and signaling pathways involved in phase separation and discuss their promising future applications in addressing the unmet clinical therapeutic needs of people with cancer. Finally, we explain the means of targeted phase separation and cancer treatment.

15.
Cancer Lett ; 550: 215929, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36202173

RESUMO

Cell death is a necessary event in life and is crucial for the regulation of organismal development, homeostasis, aging and pathological conditions. There are different modes of cell death, i.e., regulated and nonregulated. Cell death induced by programmed cell death (PCD) has gained increasing attention in recent years. Abnormal control of PCD plays an important role in tumorigenesis. For example, tumor cells are relatively resistant to apoptosis, and the induction of cell death is also an important mechanism underlying the antitumor effects of current clinical chemotherapeutic agents. Recently, studies have revealed that noncoding RNAs (ncRNAs) are involved in regulating multiple biological processes of breast cancer, including PCD. NcRNAs can exert both protumorigenic and antitumorigenic effects, depending on their expression patterns. Therefore, constructing ncRNA-based therapies to target PCD may be a promising therapeutic strategy for breast cancer. Herein, this review discusses the function of various ncRNAs in regulating the PCD of breast cancer cells. In addition, given the recent trend of utilizing ncRNAs as cancer therapeutics, we also discuss the great potential applications of ncRNAs as biomarkers or activators of PCD in breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , RNA Longo não Codificante , Antineoplásicos/farmacologia , Apoptose/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Humanos , RNA Longo não Codificante/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
16.
Chem Biol Drug Des ; 99(2): 222-232, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34679238

RESUMO

Breast cancer is a malignant tumor that occurs in the glandular epithelium of the breast, and more than 15% of the patients are triple-negative breast cancer (TNBC). Therefore, finding new targets and targeted therapeutic drugs for TNBC is urgent. Overexpression of the AXL is associated with motility and invasiveness of the TNBC cells, which is a potential target for breast cancer therapy. A compound Y041-5921 (IC50  = 6.069 µm for AXL kinase and IC50  = 4.1 µm for MDA-MB-231 cell line) was identified through structure-based virtual screening and bioassay test for the first time. The compound Y041-5921 could significantly inhibit the proliferation and invasion of the TNBC cells and the toxicity of Y041-5921 to normal immortalized breast epithelial cells was far lower than that of commonly used clinical chemotherapy drugs. Besides, it also had well inhibitory effect on the proliferation of many other malignant tumor cell lines (the IC50  value are 10.0 m, 7.1 m, 10.3 m, 11.4 m and 5.8 m for U251 cell, COLO cell, PC-9 cell, CAKI-1 cell and MG63 cell, respectively). The interaction mechanism between Y041-5921 and AXL was studied by molecular dynamics (MD) simulations and binding free energy calculation, and the key residues whose energy contribution mainly comes from non-polar solvation interaction (such as Ala565, Lys567, Met598, Leu620, Pro621, Met623, Lys624, Arg676, Asn677 and Met679) were identified. The small molecule inhibitors Y041-5921 targeting AXL reported in this work will lay a foundation and provide a theoretical basis for the development of the TNBC.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/diagnóstico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Detecção Precoce de Câncer , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , Fosforilação , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Receptor Tirosina Quinase Axl
17.
Cell Death Dis ; 13(8): 749, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042208

RESUMO

Triple-negative breast cancer (TNBC), an aggressive histological subtype of breast cancer, exhibits a high risk of early recurrence rate and a poor prognosis, and it is primarily associated with the abundance of cancer stem cells (CSCs). At present, the strategies for effectively eradicating or inhibiting TNBC CSCs are still limited, which makes the development of novel drugs with anti-CSCs function be of great value for the treatment of TNBC, especially the refractory TNBC. In this study, we found that the small-molecule tyrosine kinase inhibitor DCC-2036 suppressed TNBC stem cells by inhibiting the tyrosine kinase AXL and the transcription factor KLF5. DCC-2036 downregulated the expression of KLF5 by decreasing the protein stability of KLF5 via the AXL-Akt-GSK3ß signal axis, and in turn, the downregulation of KLF5 further reduced the expression of AXL via binding to its promotor (-171 to -162 bp). In addition, p-AXL/AXL levels were positively correlated with KLF5 expression in human TNBC specimens. These findings indicated that DCC-2036 is able to suppress the CSCs in TNBC by targeting the AXL-KLF5 positive feedback loop. Moreover, our findings indicated that DCC-2036 increased the sensitivity of TNBC chemotherapy. Therefore, this study proposes a potential drug candidate and several targets for the treatment of refractory TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Proliferação de Células , Receptor DCC , Retroalimentação , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Células-Tronco Neoplásicas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinolinas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
18.
Mol Ther Nucleic Acids ; 26: 473-487, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34631278

RESUMO

Mounting evidence reveals that dysregulation of circular RNAs (circRNAs) is involved in the development of glioblastoma. Leucine-rich repeat-containing 4 (LRRC4) has been shown to suppress tumors in glioblastoma. However, whether LRRC4 can regulate the formation of circRNA is not yet understood. In this study, LRRC4 was found to interact with SAM68. LRRC4 promoted the generation of circCD44 by inhibiting the binding between SAM68 and CD44 pre-mRNA. Moreover, downregulated expression of circCD44 was found in glioblastoma multiforme (GBM) tissues and GBM primary cells. Re-expression of circCD44 significantly suppressed the proliferation, colony formation, and invasion of GBM cells and inhibited tumor growth in vivo. Mechanistically, circCD44 could regulate the expression of SMAD6 via sponging miR-326 and miR-330-5p involved in the progression of GBM. Thus, the LRRC4/SAM68/circCD44/miR-326/miR-330-5p/SMAD6 signaling axis could be a potential target for GBM treatment.

19.
Ann Palliat Med ; 9(3): 1351, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32389022

RESUMO

This corrects the article DOI: 10.21037/apm.2020.03.29.

20.
Oncogene ; 39(23): 4551-4566, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32372061

RESUMO

Temozolomide (TMZ) insensitivity and resistance are major causes of treatment failure and poor prognosis for GBM patients. Here, we identify LRRC4 as a novel autophagy inhibitor that restores the sensitivity of GBMs to TMZ. LRRC4 was associated with the DEPTOR/mTOR complex, and this interaction resulted in autophagy inhibition. Further investigation demonstrated that the PDZ binding domain of LRRC4 binds to the PDZ domain of DEPTOR. This binding decreases the half-life of DEPTOR via ubiquitination, thus inhibiting GBM cell autophagy and increasing the TMZ treatment response of GBM. Combined LRRC4 expression and TMZ treatment prolonged the survival of mice with tumour xenografts. Furthermore, the levels of LRRC4, DEPTOR and autophagy are clinically relevant for GBM, indicating that LRRC4 is likely to have significant potential as a therapeutic marker and target for TMZ treatment in glioma patients.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Autofagia/genética , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Temozolomida/farmacologia , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/patologia , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Knockout , Domínios Proteicos/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA