Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Front Pharmacol ; 15: 1375779, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751784

RESUMO

To expand the application of nobiletin (NOB) in semi-solid functional foods, bovine serum albumin (BSA)/carboxymethyl inulin (CMI) complexes-stabilized Pickering emulsion (BCPE) (φoil = 60%, v/v) was fabricated, and the swallowing index and bioavailability of the NOB-loaded Pickering emulsion was evaluated. Confocal laser scanning microscope (CLSM) and cryo-scanning electron microscopy (cryo-SEM) images revealed that BSA/CMI complexes attached to the oil-water interface. NOB-loaded BCPE exhibited a viscoelastic and shear-thinning behavior. Fork drip test results suggested that the textural value of unloaded and NOB-loaded emulsions was International Dysphagia Diet Standardisation Initiative Level 4, which could be swallowed directly without chewing. The in vitro lipolysis model suggested that NOB had a faster digestive profile and a higher bioaccessibility in the BCPE than in the oil suspension. The in vivo rat model revealed that the oral bioavailability of NOB was increased by 2.07 folds in BCPE compared to its bioavailability in unformulated oil. Moreover, BCPE led to a higher plasma concentration of the major demethylated metabolite of NOB (4'-demethylnobiletin) than the unformulated oil. Accordingly, BCPE enhanced the oral bioavailability of NOB by improving bioaccessibility, absorption, and biotransformation.

2.
Food Funct ; 14(13): 6212-6225, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37345830

RESUMO

Lipid-based delivery systems are commonly used to encapsulate hydrophobic bioactive compounds for enhancing their bioaccessibility and bioavailability, especially for triacylglycerol (TAG) oil-based delivery systems. However, studies on the development of 1,3-diacylglycerol (DAG) oil-based delivery systems are rather limited. Herein, the influence of 1,3-DAG oil as a carrier oil on the properties of nanoemulsions and the bioaccessibility of encapsulated hydrophobic nobiletin (NOB) were investigated. High-purity 1,3-DAG (over 93% pure) was prepared by a combination of enzymatic esterification and ethanol crystallization. 1,3-DAG oil as a carrier oil could be used to formulate nanoemulsions with smaller droplet size, narrower size distribution and similar stability compared to TAG oil. Importantly, 1,3-DAG oil could efficiently encapsulate high-loading NOB (1.45 mg g-1) in nanoemulsions and significantly improve the bioaccessibility of NOB (above 80%), which is attributable to its massive lipolysis and higher encapsulation capacity than TAG oil. Moreover, the addition of the 1,3-DAG component in TAG oil significantly improved the properties of nanoemulsions and the loading and bioaccessibility of NOB, especially as the 1,3-DAG content was not less than 50%. The structure of lipids (DAG versus TAG) influenced the nanoemulsion properties and the bioaccessibility of encapsulated NOB. Based on the good properties of 1,3-DAG oil coupled with its health benefits, 1,3-DAG oil-based nanoemulsion delivery systems have great prospects for improving and extending emulsion properties and bioactivity as well as bioaccessibility enhancement.


Assuntos
Diglicerídeos , Disponibilidade Biológica , Digestão , Emulsões/química , Triglicerídeos/química
3.
Food Funct ; 14(9): 4092-4105, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37038921

RESUMO

1-Oleoyl-2-palmitoyl-3-linoleoylglycerol (OPL), a key structural lipid in the breast milk fat, plays a critical role in providing nutrients and energy for infants. OPL is more abundant in Chinese breast milk fat and might be better for Chinese infants' growth. However, few studies have investigated the effect of OPL on the growth and intestinal health of the organism in early life. OPL-rich oil with 45.77% OPL was prepared by immobilized lipase-catalyzed synthesis and purification. The effects of OPL on the nutritional properties and the regulation of intestinal microbiota in early life were further investigated in vivo (Micropterus salmoides). Dietary OPL-rich oil significantly increased the juvenile fish weight gain rate, protein content, and muscular polyunsaturated fatty acids, which in turn markedly altered the muscle texture in springiness and cohesiveness. Dietary OPL-rich oil could also protect intestinal tissues by significantly increasing fish intestinal fold height, mucosal thickness, and intestinal wall thickness. Furthermore, dietary OPL-rich oil regulated intestinal microbiota. Particularly, OPL significantly increased the probiotics (Cetobacterium_sp014250685, Streptomyces_mutabilis, Saccharopolyspora_spinosa, and Nocardiopsis_kunsanensis) and reduced the potential pathogens (Staphylococcus_nepalensis, Salmonella_enterica, the Candidatus_berkiella). The structured OPL significantly promoted fish growth and improved nutritional composition due to its higher bioavailability relative to tripalmitate (PPP). Moreover, OPL significantly improved the growth, cholesterol metabolism, and intestinal health than the mixed oil (MO), which was attributed to the higher palmitic acid content in the sn-2 position. Overall, the structure of triacylglycerols and its distribution of fatty acids affected early growth and intestinal health, and OPL was more effective in the improvement of juvenile growth and intestinal health.


Assuntos
Bass , Microbioma Gastrointestinal , Animais , Bass/fisiologia , Intestinos , Triglicerídeos/análise , Leite Humano/química
4.
J Agric Food Chem ; 71(26): 10050-10064, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37345674

RESUMO

3,5,6,7,8,3',4'-Heptamethoxyflavone (HMF) could prevent obesity and hyperlipidemia, but its effects on gut microbiota and fecal metabolites remain unclear. Here, the effect of HMF on metabolic syndrome (MS) was evaluated in high-fat diet (HFD)-fed mice, and its underlying mechanisms were revealed by integrative metagenomic and metabolomic analyses. We demonstrated that HMF could effectively ameliorate HFD-induced MS by alleviating body-weight gain, fat accumulation, hepatic steatosis, and lipid and glucose abnormalities. HMF significantly altered the gut microbiota composition in HFD-fed mice with enrichment of short-chain fatty acid (SCFA)- and bile acid-producing beneficial bacteria and inhibition of harmful bacteria. Also, HMF improved microbial functions by up-regulating bile acid metabolism and down-regulating fatty acid metabolism and inflammatory response-related pathways. Consistent with the gut microbial changes, HMF altered the fecal metabolite profile of HFD-fed mice, mainly characterized by increasing SCFA and several bile acid levels as well as lowering several lysophospholipids and fatty acid levels. Correlation analysis indicated that three key species Faecalibaculum rodentium, Collinsella aerofaciens, and Lactobacillus fermentum and the increase in microbial metabolites, i.e., SCFAs and secondary bile acids, might play a positive role in alleviating MS. Our results suggested that HMF alleviated HFD-induced MS possibly by modulating the composition, function, and metabolism of gut microbiota.


Assuntos
Microbioma Gastrointestinal , Síndrome Metabólica , Camundongos , Animais , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/genética , Dieta Hiperlipídica/efeitos adversos , Metabolismo dos Lipídeos , Ácidos Graxos Voláteis/farmacologia , Ácidos e Sais Biliares/farmacologia , Camundongos Endogâmicos C57BL
5.
Front Nutr ; 9: 884829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571905

RESUMO

Soy sauce by-product oil (SSBO), a by-product of the soy sauce production process, is the lack of utilization due to an abundance of free fatty acid (FFA) and fatty acid ethyl ester (EE). The utilization of low-cost SSBO to produce value-added diacylglycerol (DAG)-enriched oil and its applications are promising for the sustainability of the oil industry. The objective of this study was to utilize SSBO containing a high content of EE and FFA as raw material to synthesize DAG-enriched oil and to evaluate its nutritional properties in fish. Based on different behaviors between the glycerolysis of EE and the esterification of FFA in one-pot enzymatic catalysis, a two-step vacuum-mediated conversion was developed for the maximum conversions of EE and FFA to DAG. After optimization, the maximum DAG yield (66.76%) and EE and FFA conversions (96 and 93%, respectively) were obtained under the following optimized conditions: lipase loading 3%, temperature 38°C, substrate molar ratio (glycerol/FFA and EE) 21:40, a vacuum combination of 566 mmHg within the initial 10 h and 47 mmHg from the 10th to 14th hour. Further nutritional study in fish suggested that the consumption of DAG-enriched oil was safe and served as a functional oil to lower lipid levels in serum and liver, decrease lipid accumulation and increase protein content in body and muscle tissues, and change fatty acid composition in muscle tissues. Overall, these findings were vital for the effective utilization of SSBO resources and the development of future applications for DAG-enriched oil as lipid-lowering functional oil in food.

6.
Front Nutr ; 9: 878768, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479750

RESUMO

Hypertension is a major risk factor leading to cardiovascular disease, and is frequently treated with angiotensin I-converting enzyme (ACE) inhibitory peptides. The objective of this study was to separate and identify an ACE-inhibitory peptide from goat milk casein hydrolysates, and to evaluate its potential for improving angiotensin II (Ang II)-mediated adverse effects on vascular smooth muscle cells (VSMCs). A novel ACE-inhibitory peptide with the highest activity from the goat milk casein hydrolysates as determined by four steps of RP-HPLC was purified and identified as Phe-Pro-Gln-Tyr-Leu-Gln-Tyr-Pro-Tyr (FPQYLQYPY). The results of inhibitory kinetics studies indicated that the peptide was a non-competitive inhibitor against ACE. Gastrointestinal digest in vitro analysis showed that the hydrolysate of FPQYLQYPY was still active after digestion with gastrointestinal proteases. Moreover, we found that the peptide could significantly inhibit the proliferation and migration of Ang II-stimulated VSMCs. Further transcriptomic analysis revealed that differentially expressed genes (DEGs) were enriched in the cardiovascular disease-related pathways, and that the peptide may have the ability to regulate vascular remodeling. Our findings indicate the potential anti-hypertensive effects of FPQYLQYPY, as well-implicate its role in regulating vascular dysfunction.

7.
Exp Gerontol ; 150: 111388, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33957261

RESUMO

Pentagalloyl glucose (PGG) is a valuable natural compound with an array of biological activities, but the immunomodulatory effect and mechanism have not been fully validated yet. In this study, to elucidate comprehensively the function of immunomodulation and its underlying mechanism of PGG in vitro and in vivo, two model systems were conducted, which including lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages cells and Pseudomonas aeruginosa (PAO1)-induced Caenorhabditis elegans (C. elegans). Current results showed that PGG significantly inhibited secretions of tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1ß), interleukin-6 (IL-6) and mediator nitric oxide (NO) in LPS-stimulated RAW264.7 cells. In addition, the expression of genes nitric oxide synthase (iNOS), TNF-α, IL-1ß and IL-6 in LPS- stimulated RAW264.7 cells was reduced by PGG. In vivo assay showed that lifespan of PAO1-induced C. elegans was enhanced significantly by 14.1% under the pre-treatment of PGG, which was abrogated in toxin sensitive mdt-15 mutant. Similarly, the PGG showed a benefit on 41.2% significant extension longevity in C. elegans under pathogenic PA14. And the nuclear localization of DAF-16 of strain TJ356 was significantly increased in PAO1-induced C. elegans by PGG. Further, PGG modulated several signaling pathways to enhance immunomodulation in C. elegans including DBL-1, DAF-2/DAF-16, and mitogen-activated protein (MAP) kinase pathways. Furthermore, other genes involved in immunomodulatory response in C. elegans were remarkably regulated such as lys-1, lys-2, spp-18, egl-9, and hif-1. Our study suggested that PGG have potential to develop into novel immunomodulatory nutraceutical.


Assuntos
Caenorhabditis elegans , Lipopolissacarídeos , Animais , Caenorhabditis elegans/metabolismo , Glucose , Imunomodulação , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Front Nutr ; 8: 768890, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869536

RESUMO

Previous studies from our lab have shown that the antimicrobial peptide F1 obtained from the milk fermentation by Lactobacillus paracasei FX-6 derived from Tibetan kefir was different from common antimicrobial peptides; specifically, F1 simultaneously inhibited the growth of Gram-negative and Gram-positive bacteria. Here, we present follow-on work demonstrating that after the antimicrobial peptide F1 acts on either Escherichia coli ATCC 25922 (E. coli) or Staphylococcus aureus ATCC 63589 (S. aureus), their respective bacterial membranes were severely deformed. This deformation allowed leakage of potassium and magnesium ions from the bacterial membrane. The interaction between the antimicrobial peptide F1 and the bacterial membrane was further explored by artificially simulating the bacterial phospholipid membranes and then extracting them. The study results indicated that after the antimicrobial peptide F1 interacted with the bacterial membranes caused significant calcein leakage that had been simulated by different liposomes. Furthermore, transmission electron microscopy observations revealed that the phospholipid membrane structure was destroyed and the liposomes presented aggregation and precipitation. Quartz Crystal Microbalance with Dissipation (QCM-D) results showed that the antimicrobial peptide F1 significantly reduced the quality of liposome membrane and increased their viscoelasticity. Based on the study's findings, the phospholipid membrane particle size was significantly increased, indicating that the antimicrobial peptide F1 had a direct effect on the phospholipid membrane. Conclusively, the antimicrobial peptide F1 destroyed the membrane structure of both Gram-negative and Gram-positive bacteria by destroying the shared components of their respective phospholipid membranes which resulted in leakage of cell contents and subsequently cell death.

9.
Food Funct ; 11(8): 7217-7230, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32760938

RESUMO

Citrus peel essential oil (CPEO) contains abundant volatile compounds and exhibits fragrance properties and beneficial pharmacological effects on humans. Herein, we aimed to investigate the effects of CPEO on the prevention of hypercholesterolemia and hepatic steatosis in high-fat diet-fed rats and identify its possible regulatory mechanisms in lipid metabolism by combining lipidomics with gene expression analysis. CPEO at effective supplementation levels of 0.5% and 0.75% significantly ameliorated hypercholesterolemia and hepatic steatosis, including decreased serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), hepatic TC and triglyceride (TG) levels, and hepatic lipid droplet accumulation. Lipidomics analysis revealed that the total levels of fatty acid (FFA), TG and cholesteryl ester (CE) classes in the liver tissue were remarkably decreased after 0.75% CPEO supplementation some of which (3 TGs and 4 CEs) might emerge as potential lipid biomarkers in response to the effects of CPEO. Furthermore, these lipidomics findings were associated with downregulation of lipogenesis-related genes SREBP-1c, ACC and FAS and upregulation of bile acid biosynthesis-related genes LXRα, CYP7A1 and CYP27A1 in the liver. This study indicated that CPEO could effectively prevent hypercholesterolemia and hepatic steatosis, possibly because of its mediation of lipid and cholesterol homeostasis by altering liver lipid metabolites and regulating lipid metabolism-related genes.


Assuntos
Citrus , Gorduras Insaturadas na Dieta/farmacologia , Hipercolesterolemia/terapia , Hepatopatia Gordurosa não Alcoólica/terapia , Óleos Voláteis/farmacologia , Animais , Biomarcadores/análise , Colesterol/sangue , Suplementos Nutricionais , Modelos Animais de Doenças , Homeostase/efeitos dos fármacos , Hipercolesterolemia/metabolismo , Lipidômica , Lipídeos/análise , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ratos , Ratos Sprague-Dawley
10.
Food Funct ; 11(9): 8141-8149, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32870226

RESUMO

Carnosic acid (CA) represents one of the most effective antioxidants that can be applied for the prevention of degenerative and chronic diseases. However, the intrinsic hydrophobic nature of CA results in low solubility and poor dissolution in the gastrointestinal (GI) tract, which limits its applications in a variety of functional food systems. In order to address these issues, we encapsulated CA in a lecithin-based nanoemulsion (CA-NE) to improve its bioaccessibility and bioavailability which are evaluated using in vitro and in vivo digestion models. The CA-NE demonstrated a loading capacity of 2.6-3.0%, an average particle size of 165 nm, a ζ-potential value of -57.2 mV, and good stability during 4-weeks of storage at 4, 25, and 37 °C. The in vitro static pH-stat lipolysis model and dynamic TNO gastrointestinal (TIM-1) model demonstrated a 12.6 and 5.6 fold increase in the total bioaccessibility of CA encapsulated in nanoemulsion, respectively, as opposed to CA in suspension form. Moreover, the in vivo pharmacokinetics study on a rat model (Male Sprague Dawley) confirmed that the bioavailability of CA in nanoemulsion showed a 2.2 fold increase, as compared to that of CA in suspension form. In conclusion, the bioaccessibility and bioavailability of CA were remarkably improved by encapsulation of CA in a lecithin-based nanoemulsion. Moreover, the combined in vitro and in vivo study could serve as a useful approach for the comprehensive evaluation of oral lipid-based delivery systems.


Assuntos
Abietanos/química , Composição de Medicamentos/métodos , Lecitinas/química , Abietanos/administração & dosagem , Abietanos/farmacocinética , Animais , Disponibilidade Biológica , Portadores de Fármacos/química , Composição de Medicamentos/instrumentação , Emulsões/administração & dosagem , Emulsões/química , Trato Gastrointestinal/metabolismo , Masculino , Nanopartículas/química , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Solubilidade
11.
J Agric Food Chem ; 68(41): 11412-11420, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32935545

RESUMO

Nobiletin has received much attention for its promising biological activities. Owing to its limited solubility, various encapsulation strategies have been developed to enhance nobiletin bioavailability. However, the understanding of the bioavailability and biotransformation of nobiletin in vivo and the correlation between in vitro and in vivo data remains limited. This study developed a high-loading nobiletin (1%) emulsion. The in vitro models, which combined pH-stat lipolysis with a Franz cell, showed very good correlation with in vivo data for the relative bioavailability. Rat studies showed that nobiletin had a high absolute bioavailability (≈20% for oil suspension). Besides, the emulsification improved the amount of bioavailable nobiletin and its major metabolite in the blood by about two times, as compared to an oil suspension. This work provides scientific insights into a rapid screening method for delivery systems and a better understanding of the biological fate of nobiletin in vivo.


Assuntos
Flavonas/administração & dosagem , Flavonas/química , Administração Oral , Animais , Disponibilidade Biológica , Biotransformação , Emulsões/administração & dosagem , Emulsões/química , Flavonas/metabolismo , Concentração de Íons de Hidrogênio , Lipólise , Masculino , Ratos , Ratos Sprague-Dawley , Solubilidade
12.
J Agric Food Chem ; 68(39): 10709-10718, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32880448

RESUMO

Nobiletin, one of the prevalent polymethoxyflavones in citrus peels, was reported to possess various health benefits. We conducted the excretion study and pharmacokinetics study of nobiletin via oral administration and intravenous injection and 15 day consecutive dosing study using the high fat diet-induced obese rats and their lean counterparts. By comparing the demethylated metabolite profiles in the urine and feces, gut microbiota demonstrated greater biotransformation activity on nobiletin than the host. The absolute oral bioavailability of nobiletin in lean (22.37% ± 4.52%) and obese (18.67% ± 4.80%) rats has a negligible statistically significant difference (P > 0.05). However, a higher extent of demethylated metabolites was found in the feces and plasma of obese rats than lean rats (P < 0.05). Moreover, the consecutive dosing of nobiletin might lead to a higher extent of demethylated metabolites in the plasma and in feces. These results suggested that gut microbiota played important roles in nobiletin metabolism.


Assuntos
Flavonas/metabolismo , Obesidade/tratamento farmacológico , Extratos Vegetais/metabolismo , Animais , Disponibilidade Biológica , Biotransformação , Citrus/química , Fezes/química , Flavonas/administração & dosagem , Flavonas/sangue , Flavonas/urina , Microbioma Gastrointestinal , Humanos , Masculino , Obesidade/sangue , Obesidade/microbiologia , Obesidade/urina , Extratos Vegetais/administração & dosagem , Extratos Vegetais/sangue , Extratos Vegetais/urina , Ratos , Ratos Sprague-Dawley
13.
Food Funct ; 11(11): 10231-10241, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33169751

RESUMO

The emergence of the plasmid-mediated colistin resistance mechanism (mcr-1) makes bacterial resistance to colistin increasingly serious. This mcr-1 mediated bacterial resistance to colicin is conferred primarily through modification of lipid A in lipopolysaccharides (LPS). In our previous research, antimicrobial peptide F1 was derived from Tibetan kefir and has been shown to effectively inhibit the growth of Gram-negative bacteria (E. coli), Gram-positive bacteria (Staphylococcus aureus), and other pathogenic bacteria. Based on this characteristic of antibacterial peptide F1, we speculated that it could inhibit the growth of the colicin-resistant E. coli SHP45 (mcr-1) and not easily produce drug resistance. Studies have shown that antimicrobial peptide F1 can destroy the liposome structure of the phospholipid bilayer by destroying the inner and outer membranes of bacteria, thereby significantly inhibiting the growth of E. coli SHP45 (mcr-1), but without depending on LPS. The results of this study confirmed our hypothesis, and we anticipate that antimicrobial peptide F1 will become a safe antibacterial agent that can assist in solving the problem of drug resistance caused by colistin.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Encefalina Metionina/análogos & derivados , Escherichia coli/efeitos dos fármacos , Precursores de Proteínas/farmacologia , Colistina/farmacologia , Encefalina Metionina/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Testes de Sensibilidade Microbiana
14.
J Agric Food Chem ; 68(22): 6142-6153, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32394707

RESUMO

Tangeretin (TAN) exhibited antilipogenic, antidiabetic, and lipid-lowering effects. However, the lipid biomarkers and the underlying mechanisms for antiobesity and cholesterol-lowering effects of TAN have not been sufficiently investigated. Herein, we integrated biochemical analysis with lipidomics to elucidate its efficacy and mechanisms in high-fat diet-fed rats. TAN at supplementation levels of 0.04 and 0.08% not only significantly decreased body weight gain, serum total cholesterol, and low-density lipoprotein cholesterol levels but also ameliorated hepatic steatosis. These beneficial effects were associated with the declining levels of fatty acids, diacylglycerols (DGs), triacylglycerols, ceramides, and cholesteryl esters by hepatic lipidomics analysis, which were attributed to downregulating lipogenesis-related genes and upregulating lipid oxidation- and bile acid biosynthesis-related genes. Additionally, 21 lipids were identified as potential lipid biomarkers, such as DGs and phosphatidylethanolamines. These findings indicated that the modulation of lipid homeostasis might be the key pathways for the mechanisms of TAN in the antiobesity and cholesterol-lowering effects.


Assuntos
Fármacos Antiobesidade/administração & dosagem , Fígado Gorduroso/tratamento farmacológico , Flavonas/administração & dosagem , Fígado/metabolismo , Obesidade/tratamento farmacológico , Animais , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Humanos , Lipidômica , Fígado/química , Masculino , Obesidade/etiologia , Obesidade/metabolismo , Ratos , Ratos Sprague-Dawley , Triglicerídeos/metabolismo
15.
Bioresour Technol ; 298: 122553, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31846852

RESUMO

Deacidification of high-acid soy sauce residue (SSR) oil is crucial to utilization of SSR oil. Aspergillus niger lipase (ANL) has been widely applied for such purpose while its immobilization still has large room for improvement. ANL was immobilized onto six different macroporous acrylic resins, accounting the effect of the different textural properties of resins on stability and their potential for application in enzymatic deacidification. The resin MARE with lower porosity, higher bulk density, and medium hydrophobicity, was chosen as the best carrier for the best thermostability and reusability. ANL-MARE is a promising catalyst than Novozym 40086, which not only exhibited higher deacidification activity and good thermostability, but also was continuously reused for 15 cycles and efficiently catalyzed from high-acid SSR oil into diacylglycerol-enriched oil. Therefore, immobilized ANL was a novel, low-cost and recyclable biocatalyst that could be used as a good alternative to higher-cost commercial lipases in industrial applications.


Assuntos
Aspergillus niger , Alimentos de Soja , Resinas Acrílicas , Biocatálise , Enzimas Imobilizadas , Lipase
16.
Food Funct ; 10(7): 4189-4198, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31250851

RESUMO

Psidium guajava L. leaves have a long history of being consumed as herbal teas in many countries. The aim of this study was to identify compounds with anticancer potentials from Psidium guajava L. leaves. Utilizing various extraction and chromatographical techniques, we have isolated one new (2) and two known compounds (1, 3). Structural analyses by the spectroscopic methods of TOF-MS, 1H NMR, 13C NMR, HSQC, and HMBC identified these three compounds as guavinoside E (1), 3,5-dihydroxy-2,4-dimethyl-1-O-(6'-O-galloyl-ß-d-glucopyranosyl)-benzophenone (2), and guavinoside B (3). Cell viability assays showed that compounds 2 and 3 inhibited the growth of HCT116 human colon cancer cells in a dose-dependent manner, where compound 2 was more potent than compound 3. Based on flow cytometry analysis, compound 2 showed stronger activity in inducing cellular apoptosis in cancer cells than compound 3. Furthermore, compounds 2 and 3 modulated expression levels of key proteins involved in cell proliferation and apoptotic signaling. Specifically, compound 2 increased the levels of p53, p-ERK1/2, p-JNK, and cleaved caspases 8 and 9, and compound 3 increased the levels of p53 and cleaved caspase 8. Overall, this study provided identities of three bioactive compounds from P. guajava L. leaves and their anti-cancer effects against human colon cancer cells, which could facilitate the utilization of these compounds and P. guajava L. leaves as potential chemoprevention agents against colon carcinogenesis.


Assuntos
Antineoplásicos/farmacologia , Benzofenonas/isolamento & purificação , Benzofenonas/farmacologia , Neoplasias do Colo/tratamento farmacológico , Extratos Vegetais/farmacologia , Folhas de Planta/química , Psidium/química , Apoptose/efeitos dos fármacos , Benzofenonas/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HCT116/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Estrutura Molecular , Proteína Supressora de Tumor p53/metabolismo
17.
Food Res Int ; 125: 108570, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31554135

RESUMO

Many dietary flavonoids existing as glycosides in fruits and vegetables are considered bioactive food components with various potential health benefits. Type 2 diabetes mellitus (T2DM) is a complex and polygenic disease with increasing global prevalence and economic burden. In this study, the hypoglycemic effect of avicularin (quercetin-3-O-α-arabinofuranoside), a flavonoid glycoside commonly found in natural plants and fruits, was determined in a high fat diet/streptozotocin induced type 2 diabetes mouse model. Our results demonstrated that dietary avicularin treatment reduced levels of fasting blood glucose, serum TG and LDL-C, liver AST and ALT, and increased hepatic glycogen in T2DM mice. Furthermore, we used RNA-Seq and iTRAQ to compare the gene and protein expression in the livers of the normal control mice (NC), diabetic control mice (DC) and avicularin treated mice (DA100). The differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were analyzed based on gene annotations and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Integrated analysis of the RNA-Seq and iTRAQ data indicated that the fifteen DEGs/DEPs showed the same trend in mRNA and protein expression levels in comparisons of both NC vs DC and DC vs DA100. KEGG analysis revealed that four DEGs/DEPs (PKM, PEPCK, PYG, and PLA2) in the glycolysis, gluconeogenesis, and arachidonic acid pathway, and six DEPs (Ndufb4, Ndufa6, Cox5a, Cox5b, Cox6c, and ATPSß) in the oxidative phosphorylation signaling pathway, play important roles in avicularin's hypoglycemic effect. We also found six other DEGs/DEPs related to T2DM (CA1, Serpinb6a, AK, Pcolce, Cand2, and Atp2a3), and five related to cancer (Phgdh, Tes, Papss1, Psat1, and Fam49b). We did further verify by qRT-PCR and explored the possible binding modes of avicularin with targeted proteins with molecular docking simulations. Taken together, our results demonstrated the protective effects of avicularin against diabetes and provided a global view about the system-level hypoglycemic mechanisms of avicularin by the comprehensive analysis of transcriptomic and proteomic data in T2DM mice.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Flavonoides/farmacologia , Fígado/metabolismo , Proteoma/metabolismo , Transcriptoma/genética , Animais , Diabetes Mellitus Experimental/genética , Flavonoides/genética , Flavonoides/metabolismo , Masculino , Camundongos , Proteoma/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
18.
J Agric Food Chem ; 67(9): 2476-2489, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30740980

RESUMO

Polymethoxyflavones (PMFs) have been shown to prevent obesity, ameliorate type 2 diabetes, and regulate lipid metabolism in vitro and in vivo. However, little is known about the contribution of 3,5,6,7,8,3',4'-heptamethoxyflavone (HMF) to prevent obesity and regulate lipid metabolism in vivo. We aimed to investigate the potential efficacy of HMF on preventing obesity and hyperlipidemia in rats fed a high-fat diet (HFD) and its underlying mechanisms. Male Sprague-Dawley rats were fed a normal diet or an HFD with or without HMF (0.02%, 0.04% and 0.08%, w/w) for 6 weeks. The supplementation of HMF not only significantly decreased body weight gain (HFD, 336.50 ± 18.84 g; LHMF, 309.43 ± 20.74 g; MHMF, 296.83 ± 13.88 g; HHMF, 265.71 ± 19.09 g; respectively, p < 0.05) and adipose tissues weight ( p < 0.05), but also markedly lowered serum levels of total cholesterol, triacylglycerol, and low-density lipoprotein cholesterol ( p < 0.05) in the sixth week in a dose-dependent manner compared with the HFD group. HMF also significantly alleviated hepatic steatosis in the liver (liver weight g/100 g body weight of HFD, 4.86 ± 0.11%; LHMF, 4.02 ± 0.33%; MHMF, 4.05 ± 0.31%; HHMF, 3.72 ± 0.34%; respectively, p < 0.05). Furthermore, transcriptome analysis and real-time quantitative RT-PCR demonstrated that HMF supplementation markedly downregulated hepatic genes related to adipogenesis transcription and inflammatory responses, and significantly upregulated genes related to fatty acid oxidation and energy expenditure. These results indicated that HMF could effectively prevent obesity and hyperlipidemia by regulation of the expression of lipid metabolism-related and inflammatory response-related genes.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Flavonoides/administração & dosagem , Hiperlipidemias/prevenção & controle , Obesidade/prevenção & controle , Adipogenia/efeitos dos fármacos , Tecido Adiposo/patologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperlipidemias/etiologia , Inflamação/genética , Metabolismo dos Lipídeos/genética , Lipídeos/sangue , Fígado/química , Fígado/metabolismo , Masculino , Obesidade/etiologia , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA