Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 63(31): 14623-14629, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39038226

RESUMO

Chalcopyrite copper-indium-gallium diselenides (CIGS) have emerged as promising materials with remarkable electronic properties and potential applicability to high-efficiency solar cells. The crystal and electronic structures of CIGS can be continuously tuned from their initial states under pressure. Although pressure-induced band gap closure in CIGS has been predicted in extensive theoretical studies, it has not been supported by experimental evidence. Here, we comprehensively investigate the pressure-dependent optical, electronic, and structural properties of Cu(In0.7Ga0.3)Se2 up to 42.6 GPa. Our experimental results reveal an irreversible electronic transition from the semiconducting to the metallic state at 14.3 GPa. Under compression, the Cu(In0.7Ga0.3)Se2 structure evolves from a tetragonal I4̅2d phase to an orthorhombic Pna21 phase, which has not been previously reported in chalcopyrite. More intriguingly, the Pna21 phase is irreversible and possesses smaller Cu-Se and In/Ga-Se bond lengths and a smaller Cu-Se-Cu bond angle than the I4̅2d phase. Density functional theory calculations indicate a lower enthalpy of the Pna21 phase than that of the I4̅2d phase at pressures above 10.6 GPa. Meanwhile, density of states calculations illustrate that metallization arises from the overlap of the Se p and Cu d orbitals as the bond length reduces. This pressure-induced behavior could facilitate the development of novel devices with various phenomena involving strong coupling of the mechanical, electrical, and optical properties of chalcopyrite.

2.
Molecules ; 29(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338402

RESUMO

Triamcinolone acetonide (TA), a medium-potency synthetic glucocorticoid, is primarily employed to treat posterior ocular diseases using vitreous injection. This study aimed to design novel ocular nanoformulation drug delivery systems using PLGA carriers to overcome the ocular drug delivery barrier and facilitate effective delivery into the ocular tissues after topical administration. The surface of the PLGA nanodelivery system was made hydrophilic (2-HP-ß-CD) through an emulsified solvent volatilization method, followed by system characterization. The mechanism of cellular uptake across the corneal epithelial cell barrier used rhodamine B (Rh-B) to prepare fluorescent probes for delivery systems. The triamcinolone acetonide (TA)-loaded nanodelivery system was validated by in vitro release behavior, isolated corneal permeability, and in vivo atrial hydrodynamics. The results indicated that the fluorescent probes, viz., the Rh-B-(2-HP-ß-CD)/PLGA NPs and the drug-loaded TA-(2-HP-ß-CD)/PLGA NPs, were within 200 nm in size. Moreover, the system was homogeneous and stable. The in vitro transport mechanism across the epithelial barrier showed that the uptake of nanoparticles was time-dependent and that NPs were actively transported across the epithelial barrier. The in vitro release behavior of the TA-loaded nanodelivery systems revealed that (2-HP-ß-CD)/PLGA nanoparticles could prolong the drug release time to up to three times longer than the suspensions. The isolated corneal permeability demonstrated that TA-(2-HP-ß-CD)/PLGA NPs could extend the precorneal retention time and boost corneal permeability. Thus, they increased the cumulative release per unit area 7.99-fold at 8 h compared to the suspension. The pharmacokinetics within the aqueous humor showed that (2-HP-ß-CD)/PLGA nanoparticles could elevate the bioavailability of the drug, and its Cmax was 51.91 times higher than that of the triamcinolone acetonide aqueous solution. Therefore, (2-HP-ß-CD)/PLGA NPs can potentially elevate transmembrane uptake, promote corneal permeability, and improve the bioavailability of drugs inside the aqueous humor. This study provides a foundation for future research on transocular barrier nanoformulations for non-invasive drug delivery.


Assuntos
Dieldrin/análogos & derivados , Nanopartículas , beta-Ciclodextrinas , Polímeros/farmacologia , Portadores de Fármacos/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Triancinolona Acetonida , Corantes Fluorescentes/farmacologia , Córnea , beta-Ciclodextrinas/farmacologia
3.
Phys Chem Chem Phys ; 24(34): 20546-20552, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35997019

RESUMO

BiNbO4 has attracted a great deal of interest due to its excellent photocatalytic activities. Besides, it possesses rich polymorphism. Here, the structural stability and structural evolution of orthorhombic α- and triclinic ß-BiNbO4 were investigated via in situ X-ray diffraction patterns and Raman spectra up to 46.7 GPa. Upon compression, both BiNbO4 samples become unstable. α-BiNbO4 transformed into the monoclinic C2/c structure at 10.3 GPa, while ß-BiNbO4 possessed one P1̄-to-P1 isostructural phase transition around 12.7 GPa, and for the first time the crystal structure of each high pressure phase was identified. Both high pressure structures remained stable without obvious symmetry changes during compression to 46.7 GPa. In addition, both phase transitions were reversible upon decompression. These results provide insights to understand pressure-induced reversible phase transition in ABO4 compounds with polymorphism.

4.
Phys Chem Chem Phys ; 23(35): 19457-19464, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524283

RESUMO

Reactive force field (ReaxFF) is a powerful computational tool for exploring material properties. In this work, we proposed an enhanced reactive force field model, which uses message passing neural networks (MPNN) to compute the bond order and bond energies. MPNN are a variation of graph neural networks (GNN), which are derived from graph theory. In MPNN or GNN, molecular structures are treated as a graph and atoms and chemical bonds are represented by nodes and edges. The edge states correspond to the bond order in ReaxFF and are updated by message functions according to the message passing algorithms. The results are very encouraging; the investigation of the potential, such as the potential energy surface, reaction energies and equation of state, are greatly improved by this simple improvement. The new potential model, called reactive force field with message passing neural networks (ReaxFF-MPNN), is provided as an interface in an atomic simulation environment (ASE) with which the original ReaxFF and ReaxFF-MPNN potential models can do MD simulations and geometry optimizations within the ASE. Furthermore, machine learning, based on an active learning algorithm and gradient optimizer, is designed to train the model. We found that the active learning machine not only saves the manual work to collect the training data but is also much more effective than the general optimizer.

5.
Nanomaterials (Basel) ; 12(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36234457

RESUMO

Lead ions in water are harmful to human health and ecosystems because of their high toxicity and nondegradability. It is important to explore effective fluorescence probes for Pb2+ detection. In this work, surface-functionalized molybdenum disulfide quantum dots (MoS2 QDs) were prepared using a hydrothermal method, and ammonium tetrathiomolybdate and glutathione were used as precursors. The photoluminescence quantum yield of MoS2 QDs can be improved to 20.4%, which is higher than that for MoS2 QDs reported in current research. The as-prepared MoS2 QDs demonstrate high selectivity and sensitivity for Pb2+ ions, and the limit of detection is 0.056 µM. The photoluminescence decay dynamics for MoS2 QDs in the presence of Pb2+ ions in different concentrations indicate that the fluorescence quenching originated from nonradiative electron transfer from excited MoS2 QDs to the Pb2+ ion. The prepared MoS2 QDs have great prospect and are expected to become a good method for lead ion detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA