Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 284: 116946, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208586

RESUMO

Citrinin (CTN) has been reported to induce renal failure and structural damage, but its nephrotoxic effects and mechanisms are not fully understood. Therefore, we established a model by orally administering CTN (0, 1.25, 5, or 20 mg/kg) to mice for 21 consecutive days. Histological and biochemical analyses revealed that CTN caused structural damage to renal tubules, increased inflammatory cell infiltration, and elevated levels of serum markers of renal function (creatinine, urea, and uric acid). Moreover, mRNA transcript levels of the inflammatory factors TNF-α, IL-1ß, and IL-6 were increased, indicating the occurrence of an inflammatory response. Furthermore, exposure to CTN induced renal oxidative stress by decreasing antioxidant GSH levels, antioxidant enzyme (SOD, CAT) activities, and increasing oxidative products (ROS, MDA). In addition, CTN increased the expression of proteins associated with endoplasmic reticulum (ER)stress and apoptotic pathways. ER stress has been shown to be involved in regulating various models of kidney disease, but its role in CTN-induced renal injury has not been reported. We found that pretreatment with the ER stress inhibitor 4-PBA (240 mg/kg, ip) alleviated CTN-induced oxidative stress, NF-κB pathway mediated inflammatory response, and apoptosis. Interestingly, 4-PBA also partially alleviated renal structural damage and dysfunction. Thus, ER stress may be a novel target for the prevention and treatment of CTN-induced renal injury.


Assuntos
Apoptose , Citrinina , Estresse do Retículo Endoplasmático , Inflamação , Estresse Oxidativo , Animais , Estresse Oxidativo/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Citrinina/toxicidade , Camundongos , Inflamação/induzido quimicamente , Inflamação/patologia , Masculino , Rim/efeitos dos fármacos , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/patologia
2.
Ecotoxicol Environ Saf ; 284: 116877, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39142118

RESUMO

Citrinin (CTN) is a mycotoxin commonly found in contaminated foods and feed, posing health risks to both humans and animals. However, the mechanism by which CTN damages the intestine remains unclear. In this study, a model of intestinal injury was induced by administering 1.25 mg/kg and 5 mg/kg of CTN via gavage for 28 consecutive days in 6-week-old Kunming mice, aiming to explore the potential mechanisms underlying intestinal injury. The results demonstrate that CTN can cause structural damage to the mouse jejunum. Additionally, CTN reduces the protein expression of Claudin-1, Occludin, ZO-1, and MUC2, thereby disrupting the physical and chemical barriers of the intestine. Furthermore, exposure to CTN alters the structure of the intestinal microbiota in mice, thus compromising the intestinal microbial barrier. Meanwhile, the results showed that CTN exposure could induce excessive apoptosis in intestinal cells by altering the expression of proteins such as CHOP and GRP78 in the endoplasmic reticulum and Bax and Cyt c in mitochondria. The mitochondria and endoplasmic reticulum are connected through the mitochondria-associated endoplasmic reticulum membrane (MAM), which regulates the membrane. We found that the expression of bridging proteins Fis1 and BAP31 on the membrane was increased after CTN treatment, which would exacerbate the endoplasmic reticulum dysfunction, and could activate proteins such as Caspase-8 and Bid, thus further inducing apoptosis via the mitochondrial pathway. Taken together, these results suggest that CTN exposure can cause intestinal damage by disrupting the intestinal barrier and inducing excessive apoptosis in intestinal cells.


Assuntos
Apoptose , Citrinina , Chaperona BiP do Retículo Endoplasmático , Retículo Endoplasmático , Mucosa Intestinal , Mitocôndrias , Animais , Citrinina/toxicidade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Camundongos , Apoptose/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Ocludina/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/patologia , Jejuno/efeitos dos fármacos , Jejuno/patologia , Animais não Endogâmicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA