Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2311851, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38312088

RESUMO

Aqueous Zn-metal battery is considered as a promising energy-storage system. However, uncontrolled zinc dendrite growth is the main cause of short-circuit failure in aqueous Zn-based batteries. One of the most efficient and convenient strategies to alleviate this issue is to introduce appropriate zincophilic nucleation sites to guide zinc metal deposition and regulate crystal growth. Herein, this work proposes Bi2 O3 /Bi nanosheets anchored on the cell wall surface of the 3D porous conductive host as the Zn deposition sites to modulate Zn deposition behavior and hence inhibit the zinc dendrite growth. Density functional theory and experimental results demonstrate that Bi2 O3 has a super zinc binding energy and strong adsorption energy with zinc (002) plane, as a super-zincophilic nucleation site, which results in the deposition of zinc preferentially along the horizontal direction of (002) crystal plane, fundamentally avoids the formation of Zn dendrites. Benefiting from the synergistic effect Bi2 O3 /Bi zincophilic sites and 3D porous structure in the B-BOGC host, the electrochemical performance of the constructed Zn-based battery is significantly improved. As a result, the Zn anode cycles for 1500 cycles at 50 mA cm-2 and 1.0 mAh cm-2 . Meanwhile, the Zn@B-BOGC//MnO2 full cell can operate stably for 2000 cycles at 2.0 A g-1 .

2.
Small ; 19(52): e2304462, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649196

RESUMO

Ammonium vanadate (NVO) often has unsatisfactory electrochemical performance due to the irreversible removal of NH4 + during the reaction. Herein, layered DMF-NVO nanoflake arrays (NFAs) grown on highly conductive carbon cloth (CC) are employed as the binder-free cathode (DMF-NVO NFAs/CC), which produces an enlarged interlayer spacing of 12.6 Å (against 9.5 Å for NH4 V4 O10 ) by effective N, N-dimethylformamide (DMF) intercalation. Furthermore, the strong attraction of highly polar carbonyl and ammonium ions in DMF can stabilize the lattice structure, and low-polar alkyl groups can interact with the weak electrostatic generated by Zn2+ , which allows Zn2+ to be freely intercalated. The DMF-NVO NFAs/CC//Zn battery exhibits an impressive high capacity of 536 mAh g-1 at 0.5 A g-1 , excellent rate capability, and cycling performance. The results of density functional theory simulation demonstrate that the intercalation of DMF can significantly reduce the band gap and the diffusion barrier of Zn2+ , and can also accommodate more Zn2+ . The assembled flexible aqueous rechargeable zinc ion batteries (FARZIBs) exhibit outstanding energy density and power density, up to 436 Wh kg-1 at 400 W kg-1 , and still remains 180 Wh kg-1 at 4000 W kg-1 . This work can provide a reference for the design of cathode materials for high-performance FARZIBs.

3.
ACS Appl Mater Interfaces ; 15(19): 23217-23225, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37146292

RESUMO

Cobalt oxide (Co3O4) is regarded as the anode material for lithium-ion batteries (LIBs) with great research value owing to its environmental friendliness and exceptional theoretical capacity. However, the low intrinsic conductivity, poor electrochemical kinetics, and unsatisfactory cycling performance severely limit its practical applications in LIBs. The construction of a self-standing electrode with heterostructure by introducing a highly conductive cobalt-based compound is an effective strategy to solve the above issues. Herein, Co3O4/CoP nanoflake arrays (NFAs) with heterostructure are constructed skillfully directly grown on carbon cloth (CC) by in situ phosphorization as an anode for LIBs. Density functional theory simulation results demonstrate that the construction of heterostructure greatly increases the electronic conductivity and Li ion adsorption energy. The Co3O4/CoP NFAs/CC exhibited an extraordinary capacity (1490.7 mA h g-l at 0.1 A g-l) and excellent performance at high current density (769.1 mA h g-l at 2.0 A g-l), as well as remarkable cyclic stability (451.3 mA h g-l after 300 cycles with a 58.7% capacity retention rate). The reasonable construction of heterostructure can promote the interfacial ion transport, significantly enhance the adsorption energy of lithium ions, improve the conductivity of Co3O4 electrode material, promote the partial charge transfer throughout the charge and discharge cycles, and enhance the overall electrochemical performance of the material.

4.
ACS Appl Mater Interfaces ; 15(40): 47566-47576, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37782766

RESUMO

Lightweight porous composite materials (PCMs) with outstanding electromagnetic interference (EMI) shielding performances are ideal for aerospace, artificial intelligence, military, and other fields. Herein, a three-dimensional Ti3C2Tx MXene/sodium alginate (SA)/carbon nanotubes (CNTs) (MSC) PCMs was prepared by a controlled directional freezing process. This method constructs a directionally ordered porous structure, which can make the incident electromagnetic waves reflect and scattered several times in the PCMs. The introduction of CNTs into the MSC PCMs can form three-dimensional conductive networks with MXene, thus improving the conductivity and further improving the electromagnetic shielding performance. Furthermore, the SA with abundant hydrogen bonding can strengthen the interlayer interaction between MXene and CNTs. Profiting from the controlled directional freezing and highly aligned porous structure, the MSC PCMs with 75 wt % CNTs exhibit ultrahigh conductivity of 1630 S m-1, an ultrahigh EMI shielding effectiveness of 48.0 dB in X-band for electromagnetic waves incident perpendicular to the hole growth direction, and compressive strength of 72.3 kPa. The as-prepared MSC PCMs show excellent EMI shielding and mechanical properties and have significant applications in the preparation of an entirely novel type of EMI shielding materials with an absorption-based mechanism.

5.
Materials (Basel) ; 11(8)2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30096812

RESUMO

6BaO·xCaO·2Al2O3 (x = 0.8, 1.2, 1.6, 2, and 2.2) aluminates were synthesized via a liquid phase co-precipitation method. Effects of the molar amount of CaO on the phase of aluminates before and after melting and their hygroscopic phase, melting properties, environmental stability, evaporation, and emission properties were systematically studied. The results show that with the increase of the molar amount of CaO, the aluminates change from a mixture phase to a single phase of Ba3CaAl2O7, and the diffraction peak shifts to a higher angle. The melted phase of the aluminates changed from a single phase to a mixed phase of Ba5CaAl4O12 and Ba3CaAl2O7. Meanwhile, the comprehensive properties of the aluminates are improved. The weight gain of 6BaO·2CaO·2Al2O3 aluminates is only 10.88% after exposure to air for 48 h; the pulse emission current density of barium tungsten cathodes impregnated with 6BaO·2CaO·2Al2O3 aluminates in the porous tungsten matrix can reach 28.60 A/cm² at 1050 °C, and the evaporation rate is 2.52 × 10-10 g/(cm²·s).

6.
Materials (Basel) ; 11(6)2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29890647

RESUMO

SiC-AlN multiphase ceramics with 10 wt. %Y2O3-BaO-SiO2 additives were fabricated by pressureless sintering in a nitrogen atmosphere. The effects of SiC contents and sintering temperatures on the sinterability, microstructure, thermal conductivity and high-frequency dielectric properties were characterized. In addition to 6H-SiC and AlN, the samples also contained Y3Al5O12 and Y4Al2O9. SiC-AlN ceramics sintered with 50 wt. % SiC at 2173 K exhibited the best thermal diffusivity and thermal conductivity (26.21 mm²·s−1 and 61.02 W·m−1·K−1, respectively). The dielectric constant and dielectric loss of the sample sintered with 50 wt. % SiC and 2123 K were 33⁻37 and 0.4⁻0.5 at 12.4⁻18 GHz. The dielectric constant and dielectric loss of the samples decreased as the frequency of electromagnetic waves increased from 12.4⁻18 GHz. The dielectric thermal conductivity properties of the SiC-AlN samples are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA