Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 150: 109605, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38704111

RESUMO

Crucian carp (Carassius carassius) is an important aquatic economic animal, and the immune barrier function of its intestine has been a focus of research into oral vaccines and drugs. However, the histological structures of the intestinal barrier and its adjacent areas have not been clearly established, and little subcellular evidence is available to elucidate the spatial distribution of intracellular biological processes. In this study, the spatial distribution of autophagy and endosome formation in the intestinal epithelial cells (IECs) of crucian carp were analyzed. These two biological activities are closely related to intestinal homeostasis, immunity, and cell communication. Periodic acid-Schiff (PAS) and Masson's trichrome staining were employed to elucidate the distinctive histological framework of the Crucian carp's myoid cell network, which resides within the subepithelial layer and is characterized by gap junctions. Transmission electron microscopy (TEM), immunohistochemistry (IHC), and immunofluorescence (IF) were used to detect the structural and functional aspects of the IEC in different intestinal segments. TEM and immunohistochemical analyses captured the biogenesis and maturation of early and late endosomes as well as multivesicular bodies (MVBs), as well as the initiation and progression of autophagy, including macroautophagy and mitophagy. The endosome and MVBs-specific marker CD63 and autophagy-related protein LC3 were highly expressed in IECs and were correlated with autophagy and endosome biosynthesis in the apical and basal regions of individual cells, and differed between different intestinal segments. In summary, this study elucidated the ubiquity and morphological characteristics of autophagy and endosome formation across different intestinal segments of crucian carp. A unique myoid cell network beneath the intestinal epithelium in crucian carp was also identified, expanding the histological understanding of this animal's intestinal tract.


Assuntos
Autofagia , Carpas , Endossomos , Animais , Carpas/imunologia , Endossomos/imunologia , Endossomos/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/citologia , Intestinos/imunologia , Intestinos/citologia , Células Epiteliais/imunologia
2.
Fish Shellfish Immunol ; 141: 109024, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37619762

RESUMO

The allogeneic crucian carp is an important fish farm animal with a very different digestive system structure from that of mammals. The lamina propria of the fish intestine is also considered to be an important site of intestinal immunity in fish, but functional histological studies of the lamina propria of the allogeneic crucian carp intestine are still lacking. In this study, Identification of the ubiquitous lamina propria mucus cells in the lamina propria of the intestine by hematoxylin-eosin staining, and determination of the mucocytic properties, class, and distribution of these cells in each intestinal segment by Alcian Blue-Periodic Acid-Schiff (AB-PAS) staining. The results show that type III mucus cells were abundant in the lamina propria of the foregut and midgut, while type II and type IV mucus cells predominate in the hindgut, possibly reflecting the distinct functions of these intestinal segments. Transmission electron microscopy dissected the differentiation of mucus cells in the lamina propria of the intestine at the ultrastructural level and investigated their morphology and distribution patterns in different intestinal segments, the findings revealed that lamina propria mucus cells perform rudimentary functions such as mucous secretion, phagocytosis, and degradation functions. Moreover, immunohistochemistry labeling with CD68 and LAMP1 revealed that numerous cells in the anterior, middle, and posterior intestines were positive for both proteins. Immunofluorescence double-labeling demonstrated that these cells highly co-expressed CD68 and LAMP1. Besides, the distribution and morphology of CD68+ and LAMP1+ cells were similar to those of AB-PAS positive cells and they accounted for the majority of parenchyma cells. Considering the above results, there were abundant cells with both mucous secretion and phagocytosis in the intestinal lamina propria of allogeneic crucian carp, which are a essential component of the intestinal immune process of allogeneic crucian carp.


Assuntos
Carpas , Transplante de Células-Tronco Hematopoéticas , Animais , Mucosa Intestinal , Muco , Diferenciação Celular , Mamíferos
3.
Microsc Microanal ; : 1-9, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36204971

RESUMO

Telocyte (TC)­a new type of interstitial cell with long telopodes, can form cellular junctions with various tissues or cells to participate in the regulation of multitudes of physiological activities and diseases. This study aimed to characterize the morphology, molecular features, and potential functions of hormone regulation in Chinese soft-shelled turtle (Pelodiscus sinensis) testis TCs at different reproductive stages by histological evaluation, immunohistochemistry (IHC), immunofluorescence (IF), and transmission electron microscopy. During hibernation, TCs were widely distributed in the interstitial tissue. In contrast, during reproductive activity, TCs were noted to be in close proximity with peritubular myoid cells surrounding the seminiferous tubule. Moreover, formed cell­cell junctions were observed between TCs and PTMs. The results of IHC and IF showed that the immunophenotype of testicular TCs in hibernating Chinese soft-shelled turtles is CD34+Vimentin−, while the reproductive telopodes (Tps) show low expression of vimentin. The androgen receptor is expressed in Tps of TCs of testis during hibernation. Our results showed also that TCs in seasonal breeding animals regulate the activity of neighboring cells by releasing extracellular microvesicles (EXMVs), thus influencing the activity of spermatogenesis and steroidogenesis. Consideration of our novel and interesting results indicate that the whole area warrants further research.

4.
Sensors (Basel) ; 19(2)2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30669605

RESUMO

Three-dimensional ghost imaging (3DGI) using a detector is widely used in many applications. The performance of 3DGI based on a uniform time slice is difficult to improve because obtaining an accurate time-slice position remains a challenge. This paper reports a novel structure based on non-uniform time slice combined with finite difference. In this approach, finite difference is beneficial to improving sensitivity of zero crossing to accurately obtain the position of the target in the field of view. Simultaneously, non-uniform time slice is used to quickly obtain 3DGI on an interesting target. Results show that better performances of 3DGI are obtained by our proposed method compared to the traditional method. Moreover, the relation between time slice and the signal-noise-ratio of 3DGI is discussed, and the optimal differential distance is obtained, thus motivating the development of a high-performance 3DGI.

5.
Poult Sci ; 101(7): 101859, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35561461

RESUMO

The esophagus is a tubular organ which act as a passage for food from oral cavity to stomach. Telocytes (TCs) are a unique type of interstitial cell whose existence in many organs of various species still remains unknown. In the present study, we used transmission electron microscopy (TEM) and immunohistochemistry (CD34, Vimentin, PDGFR-α) to identify subepithelial TCs in the esophageal wall of chickens. TEM micrographs confirmed the presence of TCs in the lamina propria, tunica submucosa, and tunica muscularis muscular layer of the esophageal wall. A large population of TCs were observed just beneath the epithelial layer of the esophageal wall, and the TCs demonstrated structural heterogenicity, featuring various cell body shapes of cell bodies and telopodes (Tps) with podoms, podomeres, and dichotomous branching. Furthermore, a large number of extracellular vesicles were found to be associated with TCs/Tps. Cellular extensions from TCs were observed in close proximity to blood vessels, immune cells, and mucosal glands. In the submucosa, Tps and immune cells were in very close contact. Immunohistochemical results showed that there were CD34+ cells, vimentin+ cells, and PDGFR-α+ cells in the subepithelium, lamina propria, and mucosal glands of the chicken esophageal wall, which was consistent with the TEM results. Overall, our data confirmed the existence of TCs in the chicken esophagus and suggested that TCs might contribute to epithelial regeneration and tissue homeostasis.


Assuntos
Galinhas , Telócitos , Animais , Antígenos CD34/análise , Antígenos CD34/metabolismo , Galinhas/metabolismo , Esôfago/metabolismo , Telócitos/química , Telócitos/metabolismo , Vimentina/análise , Vimentina/metabolismo
6.
Front Vet Sci ; 9: 852407, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35400114

RESUMO

Telocytes (TCs) are a new type of mesenchymal cells that have been discovered recently in many organs and tissues. However, studies of TCs in the avian reproductive system are still at the beginning. Chickens are one of the world's most popular domesticated animals, providing inexpensive but valuable proteins and nutrients from chickens and eggs to nourish the human bodies. Chickens have important scientific value; thus, understanding the reproductive system regulations seems to be important. The utero-vaginal junction is involved in the regulation of sperm storage. The sperm storage tube (SST) in the utero-vaginal junction stores sperm. The purpose of this study was to investigate the existence of TCs in the utero-vaginal junction of the chicken, and their structural relationships with the sperm storage tube and surrounding cell types. We studied the morphology, ultrastructure, and immune characterization of TCs. Methods: The utero-vaginal junction of 4-month-old healthy adult chickens (n = 10) were used for Masson's staining, fluorescent in situ hybridization technique (FISH), and transmission electron microscopy (TEM) analysis. The results showed that TCs were present in the utero-vaginal junction. TCs appear as CD34 immunopositive and C-kit immunopositive. They were identified especially via small-body and long-protrusion telopodes (Tps) containing Podomers (Pm) and Podoms (Pd). The Tps were bent, folded, and intertwined with each other, sometimes in the shape of a labyrinth. The Tps were embedded between collagen fiber bundles, smooth muscle bundles, and around blood vessels and releasing vesicles. TCs surround these glands, forming heteromorphic cell connections with surrounding lymphocytes and plasma cells, smooth muscle cells, blood vessels, collagen fibers, and fibroblast-formed homotypic or allotypic connections in a complex three-dimensional network structure. This study provides a morphological basis for the possible role of TCs in regulating the utero-vaginal junction physiological role and in intercellular communication.

7.
Chemosphere ; 185: 589-594, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28719878

RESUMO

It has been reported that fluoride exposure may cause serious public health problems, particularly neurotoxicity. However, the underlying mechanisms remain unclear. This study used Neuro-2A cells to investigate the effects of fluoride on the cytoskeleton. The Neuro-2A cells were exposed to 0, 1, 2, 4 and 6 mM sodium fluoride (NaF) for 24 h. Cell viability and lactate dehydrogenase (LDH) release were examined. It was observed that exposure to NaF reduced cell viability, disrupted cellular membrane integrity, and high levels of LDH were released. The observed changes occurred in a dose response manner. Morphologic observations showed that cell became rounded and were loosely adherent following exposure to NaF. Axon spines and normal features disappeared with high dose NaF treatment. The expression of MAP2 and synaptophysin decreased, particularly at 4 mM and 6 mM (P < 0.05) for MAP2. These results corroborate the morphologic observations. The content of glutamate and NMDAR (glutamate receptor) protein were assessed to help understand the relationship between synapses and neurotransmitter release using ELISA and Western-blot. Compared with the control, glutamate and NMDAR expression declined significantly at 4 mM and 6 mM (P < 0.05) group. Finally, the ultrastructural changes observed with increasing doses of NaF were: disappearance of synapses, mitochondrial agglutination, vacuole formation, and cellular edema. Taken together, NaF exposure disrupted cellular integrity and suppressed the release of neurotransmitters, thus effecting neuronal function. These findings provide deeper insights into roles of NaF in neuron damage, which could contribute to a better understanding of fluoride-induced neurotoxicity.


Assuntos
Citoesqueleto/efeitos dos fármacos , Fluoretos/toxicidade , Substâncias Perigosas/toxicidade , Linhagem Celular , Membrana Celular , Sobrevivência Celular/efeitos dos fármacos , Fluoretos/metabolismo , Microtúbulos , Neurônios/efeitos dos fármacos , Fosfatos , Fluoreto de Sódio/farmacologia , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA