Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Nature ; 613(7942): 53-59, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36600061

RESUMO

Interlayer electronic coupling in two-dimensional materials enables tunable and emergent properties by stacking engineering. However, it also results in significant evolution of electronic structures and attenuation of excitonic effects in two-dimensional semiconductors as exemplified by quickly degrading excitonic photoluminescence and optical nonlinearities in transition metal dichalcogenides when monolayers are stacked into van der Waals structures. Here we report a van der Waals crystal, niobium oxide dichloride (NbOCl2), featuring vanishing interlayer electronic coupling and monolayer-like excitonic behaviour in the bulk form, along with a scalable second-harmonic generation intensity of up to three orders higher than that in monolayer WS2. Notably, the strong second-order nonlinearity enables correlated parametric photon pair generation, through a spontaneous parametric down-conversion (SPDC) process, in flakes as thin as about 46 nm. To our knowledge, this is the first SPDC source unambiguously demonstrated in two-dimensional layered materials, and the thinnest SPDC source ever reported. Our work opens an avenue towards developing van der Waals material-based ultracompact on-chip SPDC sources as well as high-performance photon modulators in both classical and quantum optical technologies1-4.

2.
Small ; : e2402528, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845027

RESUMO

The crystal structure and phase stability of a host lattice plays an important role in efficient upconversion phenomena. In stable hosts, lanthanides doping should not generally change the crystal structure of the host itself. But when phase of a system drastically changes after lanthanide doping resulting in multiple phases, accurate identification of upconverting phase remains a challenge. Herein, an attempt to synthesize lanthanide-doped NiMoO4 by microwave hydrothermal method produced MoO3/Yb2Mo4O15/NiMoO4 micro-nano composite upconversion phosphor. A combined approach of density functional theory (DFT) calculations and single-particle-level upconversion imaging has been employed to elucidate the phase stability of different phases and upconversion properties within the composite. Through single-particle-level imaging under 980 nm excitation, an unprecedented resolution in visualizing individual emitting and non-emitting regions within the composite has been achieved, thereby allowing to accurately assign the Yb2Mo4O15 as a sole upconversion emitting phase in the composite. Result of the DFT calculation further shows that the Yb2Mo4O15 phase is the most thermodynamically preferred over other lanthanide-doped phases in the composite. This comprehensive understanding not only advances the knowledge of upconversion emission from composite materials but also holds promise for tailoring optical properties of materials for various applications, including bioimaging, sensing, and photonics, where controlled light emission is crucial.

3.
Nano Lett ; 23(8): 3394-3400, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37043331

RESUMO

Magnetic Weyl semimetals (MWSMs) exhibit unconventional transport phenomena, such as large anomalous Hall (and Nernst) effects, which are absent in spatial inversion asymmetry WSMs. Compared with its nonmagnetic counterpart, the magnetic state of a MWSM provides an alternative way for the modulation of topology. Spin-orbit torque (SOT), as an effective means of electrically controlling the magnetic states of ferromagnets, may be used to manipulate the topological magnetic states of MWSMs. Here we confirm the MWSM state of high-quality Co2MnGa film by systematically investigating the transport measurements and demonstrating that the magnetization and topology of Co2MnGa can be electrically manipulated. The electrical and magnetic optical measurements further reveal that the current-induced SOT switches the topological magnetic state in a 180-degree manner by applying positive/negative current pulses and in a 90-degree manner by alternately applying two orthogonal current pulses. This work opens up more opportunities for spintronic applications based on topological materials.

4.
J Am Chem Soc ; 145(6): 3624-3635, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36735914

RESUMO

Transition-metal trihalides MX3 (M = Cr, Ru; X = Cl, Br, and I) belong to a family of novel two-dimensional (2D) magnets that can exhibit topological magnons and electromagnetic properties, thus affording great promises in next-generation spintronic devices. Rich magnetic ground states observed in the MX3 family are believed to be strongly correlated to the signature Kagome lattice and interlayer van der Waals coupling raised from distinct stacking orders. However, the intrinsic air instability of MX3 makes their direct atomic-scale analysis challenging. Therefore, information on the stacking-registry-dependent magnetism for MX3 remains elusive, which greatly hinders the engineering of desired phases. Here, we report a nondestructive transfer method and successfully realize an intact transfer of bilayer MX3, as evidenced by scanning transmission electron microscopy (STEM). After surveying hundreds of MX3 thin flakes, we provide a full spectrum of stacking orders in MX3 with atomic precision and calculated their associated magnetic ground states, unveiled by combined STEM and density functional theory (DFT). In addition to well-documented phases, we discover a new monoclinic C2/c phase in the antiferromagnetic (AFM) structure widely existing in MX3. Rich stacking polytypes, including C2/c, C2/m, R3̅, P3112, etc., provide rich and distinct magnetic ground states in MX3. Besides, a high density of strain soliton boundaries is consistently found in all MX3, combined with likely inverted structures, allowing AFM to ferromagnetic (FM) transitions in most MX3. Therefore, our study sheds light on the structural basis of diverse magnetic orders in MX3, paving the way for modulating magnetic couplings via stacking engineering.

5.
Proc Natl Acad Sci U S A ; 117(12): 6362-6369, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32161125

RESUMO

Shrinking the size of a bulk metal into nanoscale leads to the discreteness of electronic energy levels, the so-called Kubo gap δ. Renormalization of the electronic properties with a tunable and size-dependent δ renders fascinating photon emission and electron tunneling. In contrast with usual three-dimensional (3D) metal clusters, here we demonstrate that Kubo gap δ can be achieved with a two-dimensional (2D) metallic transition metal dichalcogenide (i.e., 1T'-phase MoTe2) nanocluster embedded in a semiconducting polymorph (i.e., 1H-phase MoTe2). Such a 1T'/1H MoTe2 nanodomain resembles a 3D metallic droplet squeezed in a 2D space which shows a strong polarization catastrophe while simultaneously maintaining its bond integrity, which is absent in traditional δ-gapped 3D clusters. The weak screening of the host 2D MoTe2 leads to photon emission of such pseudometallic systems and a ballistic injection of carriers in the 1T'/1H/1T' homojunctions which may find applications in sensors and 2D reconfigurable devices.

6.
Nano Lett ; 22(18): 7615-7620, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36099590

RESUMO

Chirality generates spontaneous symmetry breaking and profoundly influences the topology, charge, and spin orders of materials. The chiral charge density wave (CDW) exhibits macroscopic chirality in the achiral crystal during the spontaneous electronic phase transitions. However, the mechanism of chiral CDW formation is shrouded in controversy. In this work, we report that two-dimensional H-phase TaS2 synthesized by molecular-beam epitaxy (MBE) shows a predominantly chiral CDW phase. Scanning tunneling microscopy (STM) imaging of the CDW reconstruction spots reveals a clockwise or anticlockwise intensity variation along the STM-imaged spots. First-principles calculations further show that the rotational symmetry of the momentum-dependent electron-phonon coupling is broken, giving rise to chirality. Our work provides new insights into the physical origin of the chiral charge-ordered states, shedding light on a general ordering rule in chiral CDWs.

7.
Nano Lett ; 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36150019

RESUMO

The strong interaction between charge and lattice vibration gives rise to a polaron, which has a profound effect on optical and transport properties of matters. In magnetic materials, polarons are involved in spin dependent transport, which can be potentially tailored for spintronic and opto-spintronic device applications. Here, we identify the signature of ultrafast formation of polaronic states in CrBr3. The polaronic states are long-lived, having a lifetime on the time scale of nanoseconds to microseconds, which coincides with the emission lifetime of ∼4.3 µs. Transition of the polaronic states is strongly screened by the phonon, generating a redshift of the transition energy ∼0.2 eV. Moreover, energy-dependent localization of polaronic states is discovered followed by transport/annihilation properties. These results shed light on the nature of the polarons and their formation and transport dynamics in layered magnetic materials, which paves the way for the rational design of two-dimensional magnetic devices.

8.
J Am Chem Soc ; 144(12): 5527-5534, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35293743

RESUMO

In a two-dimensional (2D) Kagome lattice, the ideal Kagome bands including Dirac cones, van Hove singularities, and a flat band are highly expected, because they can provide a promising platform to investigate novel physical phenomena. However, in the reported Kagome materials, the complex 3D and multiorder electron hoppings result in the disappearance of the ideal Kagome bands in these systems. Here, we propose an alternative way to achieve the ideal Kagome bands in non-Kagome materials by confining excess electrons in the system to the crystal interstitial sites to form a 2D Kagome lattice, coined as a Kagome electride. Then, we predict two novel stable 2D Kagome electrides in hexagonal materials Li5Si and Li5Sn, whose band structures are similar to the ideal Kagome bands, including topological Dirac cones with beautiful Fermi arcs in their surface states, van Hove singularities, and a flat band. In addition, Li5Si is revealed to be a low-temperature superconductor at ambient pressure, and its superconducting transition temperature Tc can be increased from 1.1 K at 0 GPa to 7.2 K at 100 GPa. The high Tc is unveiled to be the consequence of strong electron-phonon coupling originated from the sp-hybridized phonon-coupled bands and phonon softening caused by strong Fermi nesting. Due to the strong Fermi nesting, the charge density wave phase transition occurs at 110 GPa with the lattice reconstructed from hexagonal to orthorhombic, accompanied with the increase of Tc to 10.5 K. Our findings pave an alternative way to fabricate more real materials with Kagome bands in electrides.

9.
Small ; 18(28): e2202368, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35719029

RESUMO

The chemical bond is of central interest in chemistry, and it is of significance to study the nature of intermolecular bonds in real-space. Herein, non-contact atomic force microscopy (nc-AFM) and low-temperature scanning tunneling microscopy (LT-STM) are employed to acquire real-space atomic information of molecular clusters, i.e., monomer, dimer, trimer, tetramer, formed on Au(111). The formation of the various molecular clusters is due to the diversity of halogen bonds. DFT calculation also suggests the formation of three distinct halogen bonds among the molecular clusters, which originates from the noncovalent interactions of Br-atoms with the positive potential H-atoms, neutral potential Br-atoms, and negative potential N-atoms, respectively. This work demonstrates the real-space investigation of the multiple halogen bonds by nc-AFM/LT-STM, indicating the potential use of this technique to study other intermolecular bonds and to understand complex supramolecular assemblies at the atomic/sub-molecular level.

10.
Small ; 16(50): e2004683, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33191619

RESUMO

Exploring exotic interface magnetism due to charge transfer and strong spin-orbit coupling has profound application in the future development of spintronic memory. Here, the emergence and tuning of topological Hall effect (THE) from a CaMnO3 /CaIrO3 /CaMnO3 trilayer structure are studied in detail, which suggests the presence of magnetic Skyrmion-like bubbles. First, by tilting the magnetic field direction, the evolution of the Hall signal suggests a transformation of Skyrmions into topologically-trivial stripe domains, consistent with behaviors predicted by micromagnetic simulations. Second, by varying the thickness of CaMnO3 , the optimal thicknesses for the THE signal emergence are found, which allow identification of the source of Dzyaloshinskii-Moriya interaction (DMI) and its competition with antiferromagnetic superexchange. Employing high-resolution transmission electron microscopy, randomly distributed stacking faults are identified only at the bottom interface and may avoid mutual cancellation of DMI. Last, a spin-transfer torque experiment also reveals a low threshold current density of ≈109 A m-2 for initiating the bubbles' motion. This discovery sheds light on a possible strategy for integrating Skyrmions with antiferromagnetic spintronics.

11.
Nano Lett ; 18(6): 3377-3383, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29726254

RESUMO

There is a huge demand for magnetoresistance (MR) sensors with high sensitivity, low energy consumption, and room temperature operation. It is well-known that spatial charge inhomogeneity due to impurities or defects introduces mobility fluctuations in monolayer graphene and gives rise to MR in the presence of an externally applied magnetic field. However, to realize a MR sensor based on this effect is hampered by the difficulty in controlling the spatial distribution of impurities and the weak magnetoresistance effect at the monolayer regime. Here, we fabricate a highly stable monolayer graphene-on-black phosphorus (G/BP) heterostructure device that exhibits a giant MR of 775% at 9 T magnetic field and 300 K, exceeding by far the MR effects from devices made from either monolayer graphene or few-layer BP alone. The positive MR of the G/BP device decreases when the temperature is lowered, indicating a phonon-mediated process in addition to scattering by charge impurities. Moreover, a nonlocal MR of >10 000% is achieved for the G/BP device at room temperature due to an enhanced flavor Hall effect induced by the BP channel. Our results show that electron-phonon coupling between 2D material and a suitable substrate can be exploited to create giant MR effects in Dirac semimetals.

12.
Phys Chem Chem Phys ; 20(24): 16510-16517, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29808861

RESUMO

We have studied the mechanical properties of a two-dimensional (2D) boron nanoribbon network (BNRN) subjected to a uniaxial or a biaxial tensile strain using first principles calculations. The results show that the 2D BNRN is super-stretchable. The critical tensile strains of the BNRN in the χ-h1 phase along the a- and b-directions are 0.51 and 0.41, respectively, and that for the biaxial strain reaches an ultrahigh value of 0.84. By analyzing the B-B interatomic distance, coordination number and charge distribution, it is found that with increasing biaxial tensile strain, the χ-h1 BNRN undergoes two structural phase transitions, which are characterized by breaking of the B-B bonds and the partial transformation of the nanoribbon-like structures into chain-like structures. The strain-induced phase transitions significantly reduce the strain energy. We also discuss the elastic constants, Young's modulus, shear modulus, and Poisson's ratios. The super-stretchable and flexible mechanical properties of the BNRNs, together with their superior transport properties, make BNRNs useful in a wide range of applications in nanoscale electronic devices.

13.
Phys Chem Chem Phys ; 19(43): 29372-29380, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29075687

RESUMO

A large bulk band gap and tunable Dirac carriers are desired for practical device applications of topological insulators. However, most known topological insulators are narrow gap materials and the manipulation of their Dirac surface states is limited by residual bulk charge carriers originating from intrinsic defects. In this study, via density functional theory based first-principles calculations, we predict that a layered hexagonal structure of Bi2S3 is stable, and it becomes a topological insulator under a moderate compressive pressure of about 5.3 GPa. Interestingly, we find that the strength of the spin-orbit interaction in Bi2S3 can be effectively enhanced by the applied pressure. This leads to an increased inverted band gap with pressure, which can reach 0.4 eV with a pressure of 13.7 GPa. Compared to Bi2Se3, intrinsic defects are suppressed in Bi2S3 under both cation- and anion-poor growth conditions. Our calculations predict a new Bi-based topological insulator, and also shed light on control over spin-orbit interactions in Bi2S3 and tuning of its topological properties.

14.
J Am Chem Soc ; 138(42): 14121-14128, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27690410

RESUMO

Molybdenum sulfide (MoS2) is widely recognized for its catalytic activities where the edges of the crystals turn over reactions. Generating sulfur defects on the basal plane of MoS2 can improve its catalytic activity, but generally, there is a lack of model systems for understanding metal-centered catalysis on the basal planes. Here, we synthesized a new phase of substoichiometric molybdenum sulfide (s-MoSx) on a sulfur-enriched copper substrate. The basal plane of s-MoSx contains chemically reactive Mo-rich sites that can undergo dynamic dissociative adsorption/desorption processes with molecular hydrogen, thus demonstrating its usefulness for hydrogen-transfer catalysis. In addition, scanning tunneling microscopy was used to monitor surface-directed Ullmann coupling of 2,8-dibromo-dibenzothiophene molecules on s-MoSx nanosheets, where the 4-fold symmetric surface sites on s-MoSx direct C-C coupling to form cyclic tetramers with high selectivity.

15.
Phys Chem Chem Phys ; 18(46): 31424-31430, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27844074

RESUMO

We have studied the mechanical properties and phonon dispersions of fully hydrogenated borophene (borophane) under strains by first principles calculations. Uniaxial tensile strains along the a- and b-direction, respectively, and biaxial tensile strain have been considered. Our results show that the mechanical properties and phonon stability of borophane are both highly anisotropic. The ultimate tensile strain along the a-direction is only 0.12, but it can be as large as 0.30 along the b-direction. Compared to borophene and other 2D materials (graphene, graphane, silicene, silicane, h-BN, phosphorene and MoS2), borophane presents the most remarkable anisotropy in in-plane ultimate strain, which is very important for strain engineering. Furthermore, the phonon dispersions under the three applied strains indicate that borophane can withstand up to 5% and 15% uniaxial tensile strain along the a- and b-direction, respectively, and 9% biaxial tensile strain, indicating that mechanical failure in borophane is likely to originate from phonon instability.

16.
Nano Lett ; 15(3): 2061-6, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25665017

RESUMO

We report tunable in-plane anisotropic magnetoresistance (AMR) in nanodevices based on topological insulator BiSbTeSe2 (BSTS) nanoflakes by electric gating. The AMR can be changed continuously from negative to positive when the Fermi level is manipulated to cross the Dirac point by an applied gate electric field. We also discuss effects of the gate electric field, current density, and magnetic field on the in-plane AMR with a simple physical model, which is based on the in-plane magnetic field induced shift of the spin-momentum locked topological two surface states that are coupled through side surfaces and bulk weak antilocalization (WAL). The large, tunable and bipolar in-plane AMR in BSTS devices provides the possibility of fabricating more sensitive logic and magnetic random access memory AMR devices.

17.
Nano Lett ; 15(1): 80-7, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25495154

RESUMO

Topological insulators (TIs) are a new type of electronic materials in which the nontrivial insulating bulk band topology governs conducting boundary states with embedded spin-momentum locking. Such edge states are more robust in a two-dimensional (2D) TI against scattering by nonmagnetic impurities than in its three-dimensional (3D) variant, because in 2D the two helical edge states are protected from the only possible backscattering. This makes the 2D TI family a better candidate for coherent spin transport and related applications. While several 3D TIs are already synthesized experimentally, physical realization of 2D TI is so far limited to hybrid quantum wells with a tiny bandgap that does not survive temperatures above 10 K. Here, combining first-principles calculations and scanning tunneling microscopy/spectroscopy (STM/STS) experimental studies, we report nontrivial 2D TI phases in 2-monolayer (2-ML) and 4-ML Bi(110) films with large and tunable bandgaps determined by atomic buckling of Bi(110) films. The gapless edge states are experimentally detected within the insulating bulk gap at 77 K. The band topology of ultrathin Bi(110) films is sensitive to atomic buckling. Such buckling is sensitive to charge doping and could be controlled by choosing different substrates on which Bi(110) films are grown.

18.
Natl Sci Rev ; 11(1): nwad114, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38116092

RESUMO

The finite Berry curvature in topological materials can induce many subtle phenomena, such as the anomalous Hall effect (AHE), spin Hall effect (SHE), anomalous Nernst effect (ANE), non-linear Hall effect (NLHE) and bulk photovoltaic effects. To explore these novel physics as well as their connection and coupling, a precise and effective model should be developed. Here, we propose such a versatile model-a 3D triangular lattice with alternating hopping parameters, which can yield various topological phases, including kagome bands, triply degenerate fermions, double Weyl semimetals and so on. We reveal that this special lattice can present unconventional transport due to its unique topological surface states and the aforementioned topological phenomena, such as AHE, ANE, NLHE and the topological photocurrent effect. In addition, we also provide a number of material candidates that have been synthesized experimentally with this lattice, and discuss two materials, including a non-magnetic triangular system for SHE, NLHE and the shift current, and a ferromagnetic triangular lattice for AHE and ANE. Our work provides an excellent platform, including both the model and materials, for the study of Berry-curvature-related physics.

19.
Natl Sci Rev ; 11(6): nwad103, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38725935

RESUMO

Non-centrosymmetric topological material has attracted intense attention due to its superior characteristics as compared with the centrosymmetric one, although probing the local quantum geometry in non-centrosymmetric topological material remains challenging. The non-linear Hall (NLH) effect provides an ideal tool to investigate the local quantum geometry. Here, we report a non-centrosymmetric topological phase in ZrTe5, probed by using the NLH effect. The angle-resolved and temperature-dependent NLH measurement reveals the inversion and ab-plane mirror symmetries breaking at <30 K, consistently with our theoretical calculation. Our findings identify a new non-centrosymmetric phase of ZrTe5 and provide a platform to probe and control local quantum geometry via crystal symmetries.

20.
Phys Rev Lett ; 111(23): 236803, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24476296

RESUMO

A two-step doping process, magnetic followed by charge or vice versa, is required to produce massive topological surface states (TSS) in topological insulators for many physics and device applications. Here, we demonstrate simultaneous magnetic and hole doping achieved with a single dopant, carbon, in Bi2Se3 by first-principles calculations. Carbon substitution for Se (C(Se)) results in an opening of a sizable surface Dirac gap (up to 82 meV), while the Fermi level remains inside the bulk gap and close to the Dirac point at moderate doping concentrations. The strong localization of 2p states of C(Se) favors spontaneous spin polarization via a p-p interaction and formation of ordered magnetic moments mediated by surface states. Meanwhile, holes are introduced into the system by C(Se). This dual function of carbon doping suggests a simple way to realize insulating massive TSS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA