Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(20)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092191

RESUMO

Recurrent concussions increase risk for persistent post-concussion symptoms, and may lead to chronic neurocognitive deficits. Little is known about the molecular pathways that contribute to persistent concussion symptoms. We hypothesized that salivary measurement of microribonucleic acids (miRNAs), a class of epitranscriptional molecules implicated in concussion pathophysiology, would provide insights about the molecular cascade resulting from recurrent concussions. This hypothesis was tested in a case-control study involving 13 former professional football athletes with a history of recurrent concussion, and 18 age/sex-matched peers. Molecules of interest were further validated in a cross-sectional study of 310 younger individuals with a history of no concussion (n = 230), a single concussion (n = 56), or recurrent concussions (n = 24). There was no difference in neurocognitive performance between the former professional athletes and their peers, or among younger individuals with varying concussion exposures. However, younger individuals without prior concussion outperformed peers with prior concussion on three balance assessments. Twenty salivary miRNAs differed (adj. p < 0.05) between former professional athletes and their peers. Two of these (miR-28-3p and miR-339-3p) demonstrated relationships (p < 0.05) with the number of prior concussions reported by younger individuals. miR-28-3p and miR-339-5p may play a role in the pathophysiologic mechanism involved in cumulative concussion effects.


Assuntos
Biomarcadores/metabolismo , Concussão Encefálica/genética , MicroRNAs/genética , Saliva/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Atletas/estatística & dados numéricos , Estudos de Casos e Controles , Criança , Estudos Transversais , Futebol Americano , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
2.
J Sport Health Sci ; 12(3): 369-378, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-34461327

RESUMO

BACKGROUND: Recognizing sport-related concussion (SRC) is challenging and relies heavily on subjective symptom reports. An objective, biological marker could improve recognition and understanding of SRC. There is emerging evidence that salivary micro-ribonucleic acids (miRNAs) may serve as biomarkers of concussion; however, it remains unclear whether concussion-related miRNAs are impacted by exercise. We sought to determine whether 40 miRNAs previously implicated in concussion pathophysiology were affected by participation in a variety of contact and non-contact sports. Our goal was to refine a miRNA-based tool capable of identifying athletes with SRC without the confounding effects of exercise. METHODS: This case-control study harmonized data from concussed and non-concussed athletes recruited across 10 sites. Levels of salivary miRNAs within 455 samples from 314 individuals were measured with RNA sequencing. Within-subjects testing was used to identify and exclude miRNAs that changed with either (a) a single episode of exercise (166 samples from 83 individuals) or (b) season-long participation in contact sports (212 samples from 106 individuals). The miRNAs that were not impacted by exercise were interrogated for SRC diagnostic utility using logistic regression (172 samples from 75 concussed and 97 non-concussed individuals). RESULTS: Two miRNAs (miR-532-5p and miR-182-5p) decreased (adjusted p < 0.05) after a single episode of exercise, and 1 miRNA (miR-4510) increased only after contact sports participation. Twenty-three miRNAs changed at the end of a contact sports season. Two of these miRNAs (miR-26b-3p and miR-29c-3p) were associated (R > 0.50; adjusted p < 0.05) with the number of head impacts sustained in a single football practice. Among the 15 miRNAs not confounded by exercise or season-long contact sports participation, 11 demonstrated a significant difference (adjusted p < 0.05) between concussed and non-concussed participants, and 6 displayed moderate ability (area under curve > 0.70) to identify concussion. A single ratio (miR-27a-5p/miR-30a-3p) displayed the highest accuracy (AUC = 0.810, sensitivity = 82.4%, specificity = 73.3%) for differentiating concussed and non-concussed participants. Accuracy did not differ between participants with SRC and non-SRC (z = 0.5, p = 0.60). CONCLUSION: Salivary miRNA levels may accurately identify SRC when not confounded by exercise. Refinement of this approach in a large cohort of athletes could eventually lead to a non-invasive, sideline adjunct for SRC assessment.


Assuntos
Concussão Encefálica , Futebol Americano , MicroRNAs , Humanos , Saliva , Estudos de Casos e Controles , Concussão Encefálica/diagnóstico , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA