Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 21(11): e3002401, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37992072

RESUMO

There is a burgeoning appreciation for the wide-ranging effects of carbon dioxide on transcriptional regulation and metabolism. Here, Bolshette and colleagues provide the first link between carbon dioxide and the master transcriptional regulator of cholesterol homeostasis.


Assuntos
Dióxido de Carbono , Regulação da Expressão Gênica , Dióxido de Carbono/metabolismo , Homeostase , Colesterol/metabolismo
2.
Bioessays ; 46(7): e2400073, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38760877

RESUMO

Sterols and the reductant nicotinamide adenine dinucleotide phosphate (NADPH), essential for eukaryotic life, arose because of, and as an adaptation to, rising levels of molecular oxygen (O2). Hence, the NADPH and O2-intensive process of sterol biosynthesis is inextricably linked to redox status. In mammals, cholesterol biosynthesis is exquisitely regulated post-translationally by multiple E3 ubiquitin ligases, with membrane associated Really Interesting New Gene (RING) C3HC4 finger 6 (MARCHF6) degrading at least six enzymes in the pathway. Intriguingly, all these MARCHF6-dependent enzymes require NADPH. Moreover, MARCHF6 is activated by NADPH, although what this means for control of cholesterol synthesis is unclear. Indeed, this presents a paradox for how NADPH regulates this vital pathway, since NADPH is a cofactor in cholesterol biosynthesis and yet, low levels of NADPH should spare cholesterol biosynthesis enzymes targeted by MARCHF6 by reducing its activity. We speculate MARCHF6 helps mammalian cells adapt to oxidative stress (signified by low NADPH levels) by reducing degradation of cholesterogenic enzymes, thereby maintaining synthesis of protective cholesterol.


Assuntos
Colesterol , NADP , Estresse Oxidativo , Ubiquitina-Proteína Ligases , NADP/metabolismo , Colesterol/biossíntese , Colesterol/metabolismo , Humanos , Animais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Oxirredução , Esteróis/metabolismo , Esteróis/biossíntese
3.
J Lipid Res ; 64(5): 100362, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36958722

RESUMO

Cholesterol biosynthesis is a highly regulated pathway, with over 20 enzymes controlled at the transcriptional and posttranslational levels. While some enzymes remain stable, increased sterol levels can trigger degradation of several synthesis enzymes via the ubiquitin-proteasome system. Of note, we previously identified four cholesterol synthesis enzymes as substrates for one E3 ubiquitin ligase, membrane-associated RING-CH-type finger 6 (MARCHF6). Whether MARCHF6 targets the cholesterol synthesis pathway at other points is unknown. In addition, the posttranslational regulation of many cholesterol synthesis enzymes, including the C4-demethylation complex (sterol-C4-methyl oxidase-like, SC4MOL; NAD(P)-dependent steroid dehydrogenase-like, NSDHL; hydroxysteroid 17-beta dehydrogenase, HSD17B7), is largely uncharacterized. Using cultured mammalian cell lines (human-derived and Chinese hamster ovary cells), we show SC4MOL, the first acting enzyme of C4-demethylation, is a MARCHF6 substrate and is rapidly turned over and sensitive to sterols. Sterol depletion stabilizes SC4MOL protein levels, while sterol excess downregulates both transcript and protein levels. Furthermore, we found SC4MOL depletion by siRNA results in a significant decrease in total cell cholesterol. Thus, our work indicates SC4MOL is the most regulated enzyme in the C4-demethylation complex. Our results further implicate MARCHF6 as a crucial posttranslational regulator of cholesterol synthesis, with this E3 ubiquitin ligase controlling levels of at least five enzymes of the pathway.


Assuntos
Fitosteróis , Esteróis , Cricetinae , Animais , Humanos , Esteróis/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Células CHO , Cricetulus , Colesterol/metabolismo , Oxirredutases , 3-Hidroxiesteroide Desidrogenases
4.
J Lipid Res ; 63(12): 100295, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36216146

RESUMO

The enzymatic pathway of cholesterol biosynthesis has been well characterized. However, there remain several potential interacting proteins that may play ancillary roles in the regulation of cholesterol production. Here, we identified ERG28 (chromosome 14 open reading frame 1 [C14orf1]), a homologue of the yeast protein Erg28p, as a player in mammalian cholesterol synthesis. ERG28 is conserved from yeast to humans but has been largely overlooked in mammals. Using quantitative RT-PCR, luciferase assays, and publicly available chromatin immunoprecipitation sequencing data, we found that transcription of this gene is driven by the transcription factor SREBP-2, akin to most cholesterol synthesis enzymes, as well as identifying sterol-responsive elements and cofactor binding sites in its proximal promoter. Based on a split luciferase system, ERG28 interacted with itself and two enzymes of cholesterol synthesis (NSDHL and SC4MOL). Huh7 ERG28-KO cell lines were generated, revealing reduced total cholesterol levels in sterol-depleted environments. In addition, radiolabeled metabolic flux assays showed a 60-75% reduction in the rate of cholesterol synthesis in the KO versus wild-type cells, which could be rescued by expression of ectopic ERG28. Unexpectedly, KO of ERG28 also impaired the activation of SREBP-2 under sterol-replete conditions, by a yet-to-be defined mechanism. These results indicate that ERG28 is clearly involved in cholesterol synthesis, although the precise role this noncatalytic protein plays in this complex metabolic pathway remains to be fully elucidated. A deeper understanding of ERG28, and other ancillary proteins of cholesterol synthesis, may help inform therapeutic strategies for diseases associated with aberrant cholesterol metabolism.


Assuntos
Proteínas de Saccharomyces cerevisiae , Esteróis , Animais , Humanos , Proteína de Ligação a Elemento Regulador de Esterol 1 , Colesterol , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteínas Estimuladoras de Ligação a CCAAT , Mamíferos/metabolismo , 3-Hidroxiesteroide Desidrogenases , Proteínas de Membrana/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-36528253

RESUMO

Glucose metabolism and cholesterol synthesis are often regarded in isolation. Increasing evidence not only links these pathways but also suggests glucose catabolism regulates cholesterol synthesis. Uptake of glucose increases cholesterol production. However, the precise mechanism by which this occurs is not fully understood and is likely to involve many aspects of cellular pathways participating in energy sensing, cholesterol regulation, and synthesis. Here, we review some interesting links between cholesterol synthesis and glucose metabolism. Given glucose breakdown produces energy (both via glycolysis and its products through oxidative phosphorylation), and considering cholesterol synthesis is an energetically demanding process, it would seem logical that glucose metabolism impacts cholesterol synthesis. The energy sensing kinase AMPK carefully monitors energy supply to induce or suppress cholesterol synthesis as needed. Akt, activated by the insulin signalling cascade, regulates key transcription factors involved in lipid metabolism. The insulin signalling pathway also activates machinery involved in the deubiquitination of a key cholesterol synthesis enzyme. Moreover, glucose metabolites, acetyl-CoA, and GlcNAc are substrates for protein acetylation and N-glycosylation, respectively, and can stabilise proteins involved in cholesterol synthesis. As glucose and cholesterol dysregulation are both associated with numerous diseases, understanding the mechanisms of how glucose metabolism and cholesterol synthesis intersect may offer new avenues for therapeutics that make use of these findings.


Assuntos
Proteínas Quinases Ativadas por AMP , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/metabolismo , Processamento de Proteína Pós-Traducional , Glucose/metabolismo , Insulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA