Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 121: 34-46, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30236862

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. PGC-1α, encoded by PPARGC1A, is a transcriptional co-activator that has been implicated in the pathogenesis of neurodegenerative disorders. We recently discovered multiple new PPARGC1A transcripts that initiate from a novel promoter located far upstream of the reference gene promoter, are CNS-specific and are more abundant than reference gene transcripts in whole brain. These CNS-specific transcripts encode two main full-length and several truncated isoforms via alternative splicing. Truncated CNS-isoforms include 17 kDa proteins that lack the second LXXLL motif serving as an interaction site for several nuclear receptors. We now determined expression levels of CNS- and reference gene transcripts in 5 brain regions of 21, 8, and 13 deceased subjects with idiopathic PD, Lewy body dementia and controls without neurodegenerative disorders, respectively. We observed reductions of CNS-specific transcripts (encoding full-length isoforms) only in the substantia nigra pars compacta of PD and Lewy body dementia. However, in the substantia nigra and globus pallidus of PD cases we found an up-regulation of transcripts encoding the 17 kDa proteins that inhibited the co-activation of several transcription factors by full-length PGC-1α proteins in transfection assays. In two established animal models of PD, the PPARGC1A expression profiles differed from the profile in human PD in that the levels of CNS- and reference gene transcripts were decreased in several brain regions. Furthermore, we identified haplotypes in the CNS-specific region of PPARGC1A that appeared protective for PD in a clinical cohort and a post-mortem sample (P = .0002). Thus, functional and genetic studies support a role of the CNS-specific PPARGC1A locus in PD.


Assuntos
Encéfalo/metabolismo , Doença de Parkinson/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Loci Gênicos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/genética
2.
Angew Chem Int Ed Engl ; 57(10): 2580-2585, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29314474

RESUMO

The cannabinoid CB1 receptor (CB1R) is an abundant metabotropic G-protein-coupled receptor that has been difficult to address therapeutically because of CNS side effects exerted by orthosteric drug candidates. Recent efforts have focused on developing allosteric modulators that target CB1R. Compounds from the recently discovered class of mixed agonistic and positive allosteric modulators (Ago-PAMs) based on 2-phenylindoles have shown promising functional and binding properties as CB1R ligands. Here, we identify binding modes of both the CP 55,940 agonist and GAT228, a 2-phenylindole allosteric modulator, by using our metadynamics simulation protocol, and quantify their affinity and cooperativity by atomistic simulations. We demonstrate the involvement of multiple adjunct binding sites in the Ago-PAM characteristics of the 2-phenylindole modulators and explain their ability to compete with orthosteric agonists at higher concentrations. We validate these results experimentally by showing the contribution of multiple sites on the allosteric binding of ZCZ011, another homologous member of the class, together with the orthosteric agonist.


Assuntos
Indóis/farmacologia , Receptor CB1 de Canabinoide/agonistas , Regulação Alostérica/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Humanos , Indóis/química , Estrutura Molecular , Receptor CB1 de Canabinoide/metabolismo
3.
Hum Mol Genet ; 24(8): 2228-40, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25552654

RESUMO

Mutations in components of the molecular motor dynein/dynactin lead to neurodegenerative diseases of the motor system or atypical parkinsonism. These mutations are associated with prominent accumulation of vesicles involved in autophagy and lysosomal pathways, and with protein inclusions. Whether alleviating these defects would affect motor symptoms remain unknown. Here, we show that a mouse model expressing low levels of disease linked-G59S mutant dynactin p150(Glued) develops motor dysfunction >8 months before loss of motor neurons or dopaminergic degeneration is observed. Abnormal accumulation of autophagosomes and protein inclusions were efficiently corrected by lowering dietary protein content, and this was associated with transcriptional upregulations of key players in autophagy. Most importantly this dietary modification partially rescued overall neurological symptoms in these mice after onset. Similar observations were made in another mouse strain carrying a point mutation in the dynein heavy chain gene. Collectively, our data suggest that stimulating the autophagy/lysosomal system through appropriate nutritional intervention has significant beneficial effects on motor symptoms of dynein/dynactin diseases even after symptom onset.


Assuntos
Proteínas Alimentares/metabolismo , Dineínas/genética , Proteínas Associadas aos Microtúbulos/genética , Mutação de Sentido Incorreto , Degeneração Neural/dietoterapia , Degeneração Neural/metabolismo , Animais , Autofagia , Modelos Animais de Doenças , Complexo Dinactina , Dineínas/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Proteínas Associadas aos Microtúbulos/metabolismo , Atividade Motora , Neurônios Motores/metabolismo , Degeneração Neural/genética , Degeneração Neural/fisiopatologia
4.
J Neurosci Res ; 94(1): 62-73, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26451750

RESUMO

Nonmotor symptoms of cognitive and affective nature are present in premotor and motor stages of Parkinson's disease (PD). Neurogenesis, the generation of new neurons, persists throughout the mammalian life span in the hippocampal dentate gyrus. Adult hippocampal neurogenesis may be severely affected in the course of PD, accounting for some of the neuropsychiatric symptoms such as depression and cognitive impairment. Two important PD-related pathogenic factors have separately been attributed to contribute to both PD and adult hippocampal neurogenesis: dopamine depletion and accumulation of α-synuclein (α-syn). In the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model, altered neurogenesis has been linked merely to a reduced dopamine level. Here, we seek to determine whether a distinct endogenous α-syn expression pattern is associated, possibly contributing to the hippocampal neurogenic deficit. We observed a persistent reduction of striatal dopamine and a loss of tyrosine hydroxylase-expressing neurons in the substantia nigra pars compacta in contrast to a complete recovery of tyrosine hydroxylase-immunoreactive dopaminergic fibers within the striatum. However, dopamine levels in the hippocampus were significantly decreased. Survival of newly generated neurons was significantly reduced and paralleled by an accumulation of truncated, membrane-associated, insoluble α-syn within the hippocampus. Specifically, the presence of truncated α-syn species was accompanied by increased activity of calpain-1, a calcium-dependent protease. Our results further substantiate the broad effects of dopamine loss in PD-susceptible brain nuclei, gradually involved in the PD course. Our findings also indicate a detrimental synergistic interplay between dopamine depletion and posttranslational modification of α-syn, contributing to impaired hippocampal plasticity in PD.


Assuntos
Dopamina/metabolismo , Hipocampo/fisiopatologia , Intoxicação por MPTP/patologia , Neurogênese/fisiologia , alfa-Sinucleína/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Bromodesoxiuridina/metabolismo , Contagem de Células , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Antígeno Ki-67/metabolismo , Intoxicação por MPTP/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Neurogênese/efeitos dos fármacos , Neuropeptídeos/metabolismo , Espectrina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
5.
Neurocrit Care ; 23(3): 321-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25894453

RESUMO

BACKGROUND: Cerebral edema and delayed cerebral infarction (DCI) are common complications after aneurysmal subarachnoid hemorrhage (aSAH) and associated with poor functional outcome. Experimental data suggest that the amino acid taurine is released into the brain extracellular space secondary to cytotoxic edema and brain tissue hypoxia, and therefore may serve as a biomarker for secondary brain injury after aSAH. On the other hand, neuroprotective mechanisms of taurine treatment have been described in the experimental setting. METHODS: We analyzed cerebral taurine levels using high-performance liquid chromatography in the brain extracellular fluid of 25 consecutive aSAH patients with multimodal neuromonitoring including cerebral microdialysis (CMD). Patient characteristics and clinical course were prospectively recorded. Associations with CMD-taurine levels were analyzed using generalized estimating equations with an autoregressive process to handle repeated observations within subjects. RESULTS: CMD-taurine levels were highest in the first days after aSAH (11.2 ± 3.2 µM/l) and significantly decreased over time (p < 0.001). Patients with brain edema on admission or during hospitalization (N = 20; 80 %) and patients developing DCI (N = 5; 20 %) had higher brain extracellular taurine levels compared to those without (Wald = 7.3, df = 1, p < 0.01; Wald = 10.1, df = 1, p = 0.001, respectively) even after adjusting for disease severity and CMD-probe location. There was no correlation between parenteral taurine supplementation and brain extracellular taurine (p = 0.6). Moreover, a significant correlation with brain extracellular glutamate (r = 0.82, p < 0.001), lactate (r = 0.56, p < 0.02), pyruvate (r = 0.39, p < 0.01), potassium (r = 0.37, p = 0.01), and lactate-to-pyruvate ratio (r = 0.24, p = 0.02) was found. CONCLUSIONS: Significantly higher CMD-taurine levels were found in patients with brain edema or DCI after aneurysmal subarachnoid hemorrhage. Its value as a potential biomarker deserves further investigation.


Assuntos
Edema Encefálico/metabolismo , Infarto Cerebral/metabolismo , Aneurisma Intracraniano/metabolismo , Hemorragia Subaracnóidea/metabolismo , Taurina/metabolismo , Idoso , Biomarcadores/metabolismo , Edema Encefálico/etiologia , Infarto Cerebral/etiologia , Cromatografia Líquida , Feminino , Humanos , Aneurisma Intracraniano/complicações , Masculino , Microdiálise , Pessoa de Meia-Idade , Imagem Multimodal , Hemorragia Subaracnóidea/complicações
6.
Sci Adv ; 9(44): eadh2884, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37910621

RESUMO

Overeating disorders largely contribute to worldwide incidences of obesity. Available treatments are limited. Here, we discovered that long-term chemogenetic activation of ventrolateral periaqueductal gray (vlPAG) GABAergic cells rescue obesity of high-fat diet-induced obesity (DIO) mice. This was associated with the recovery of enhanced mIPSCs, decreased food intake, increased energy expenditure, and inguinal white adipose tissue (iWAT) browning. In vivo calcium imaging confirmed vlPAG GABAergic suppression for DIO mice, with corresponding reduction in intrinsic excitability. Single-nucleus RNA sequencing identified transcriptional expression changes in GABAergic cell subtypes in DIO mice, highlighting Cacna2d1 as of potential importance. Overexpressing CACNA2D1 in vlPAG GABAergic cells of DIO mice rescued enhanced mIPSCs and calcium response, reversed obesity, and therefore presented here as a potential target for obesity treatment.


Assuntos
Cálcio , Dieta Hiperlipídica , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Cálcio/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Tecido Adiposo Branco/metabolismo , Mesencéfalo , Camundongos Endogâmicos C57BL
7.
Neurobiol Dis ; 48(3): 481-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22750522

RESUMO

A key regulator of inflammatory gene expression is the transcription factor NF-κB that is controlled by the IκB proteins. We used a transgenic mouse model expressing a constitutively active IκB-kinase-2 (IKK2-CA) in astrocytes under control of the human glial fibrillary acidic protein promotor (IKK2-mice) to investigate neuroinflammation, proinflammatory cytokine expression, microglial activation and a potential enhanced susceptibility to the neurotoxin MPTP (4×10 mg/kg). Readouts included the determination of cytokines, striatal dopamine (DA), nigral tyrosine hydroxylase (TH) positive neurons, microglial activation and motor activity. IKK2-CA expression in astrocytes conditionally induced by the tet-off system resulted in a widespread neuroinflammation indicated by the increased expression of inflammatory cytokines and the presence of activated microglia and astrogliosis. Additionally, striatal DA concentrations but not nigral TH-positive neurons were reduced in IKK2-mice by 20%. Motor activity of IKK2-mice was not affected. Surprisingly, there was a similar reduction in striatal DA concentrations and the number of nigral TH-positive neurons in IKK2 and control mice after MPTP treatment. In conclusion, although naïve IKK2-mice showed reduced striatal DA concentrations and an increase in inflammatory markers in the brain, a higher susceptibility to MPTP was not observed. This finding argues against a prominent role of astrocyte specific, IKK2-mediated neuroinflammation in MPTP-induced neurodegeneration.


Assuntos
Astrócitos/enzimologia , Ativação Enzimática/fisiologia , Quinase I-kappa B/metabolismo , Inflamação/enzimologia , Intoxicação por MPTP/enzimologia , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Imunofluorescência , Humanos , Imuno-Histoquímica , Intoxicação por MPTP/imunologia , Intoxicação por MPTP/patologia , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real
8.
Eur J Pharmacol ; 935: 175306, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36183855

RESUMO

N-methyl-D-aspartate-receptor (NMDAR) hypofunction contributes to cognitive impairments in neuropsychiatric disorders such as schizophrenia. Reduced NMDAR signalling can be enhanced by increasing extracellular levels of the NMDAR co-agonist glycine through inhibition of its transporter (GlyT1). This may be one option to improve cognitive deficits or negative symptoms of schizophrenia. In this preclinical study, we aimed at investigating effects of the GlyT1-inhibitor Bitopertin on cognition, social function and motivation. Central target engagement was assessed by Bitopertin-induced changes in glycine levels in rats' cerebrospinal fluid (CSF) and prefrontal cortex (PFC). Behavioural effects of Bitopertin on recognition memory were evaluated using a social-recognition test in rats, while its effects on working memory were tested in a spontaneous alternation task in mice pre-treated with the NMDAR antagonist MK-801. Bitopertin was further investigated using a social interaction test in rats pre-treated with the NMDAR antagonist phencyclidine, and the effects on effortful motivation were explored in progressive ratio tasks in rats. Results show that Bitopertin increased glycine levels in CSF and PFC. Moreover, it enhanced recognition memory and reduced MK-801-induced working memory deficits. By contrast, Bitopertin had no significant effects on PCP-induced social interaction deficits, and it did not alter effort-related responding. Collectively, our data demonstrate that GlyT1 inhibition by Bitopertin increased CSF and extracellular glycine levels and advocated for pro-cognitive effects of GlyT1 inhibition both in intact and NMDAR antagonists-pre-treated rodents. Together, these findings support the use of GlyT1-inhibitors for the treatment of cognitive symptoms in pathologies characterized by NMDR hypofunction, such as schizophrenia.


Assuntos
Maleato de Dizocilpina , Proteínas da Membrana Plasmática de Transporte de Glicina , Animais , Camundongos , Ratos , Proteínas da Membrana Plasmática de Transporte de Glicina/fisiologia , Roedores , Receptores de N-Metil-D-Aspartato/fisiologia , Glicina/farmacologia , Glicina/uso terapêutico , Cognição
9.
Neuropharmacology ; 213: 109078, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561791

RESUMO

Apathy, deficiency of motivation including willingness to exert effort for reward, is a common symptom in many psychiatric and neurological disorders, including depression and schizophrenia. Despite improved understanding of the neurocircuitry and neurochemistry underlying normal and deficient motivation, there is still no approved pharmacological treatment for such a deficiency. GPR139 is an orphan G protein-coupled receptor expressed in brain regions which contribute to the neural circuitry that controls motivation including effortful responding for reward, typically sweet gustatory reward. The GPR139 agonist TAK-041 is currently under development for treatment of negative symptoms in schizophrenia which include apathy. To date, however, there are no published preclinical data regarding its potential effect on reward motivation or deficiencies thereof. Here we report in vitro evidence confirming that TAK-041 increases intracellular Ca2+ mobilization and has high selectivity for GPR139. In vivo, TAK-041 was brain penetrant and showed a favorable pharmacokinetic profile. It was without effect on extracellular dopamine concentration in the nucleus accumbens. In addition, TAK-041 did not alter the effort exerted to obtain sweet gustatory reward in rats that were moderately food deprived. By contrast, TAK-041 increased the effort exerted to obtain sweet gustatory reward in mice that were only minimally food deprived; furthermore, this effect of TAK-041 occurred both in control mice and in mice in which deficient effortful responding was induced by chronic social stress. Overall, this study provides preclinical evidence in support of GPR139 agonism as a molecular target mechanism for treatment of apathy.


Assuntos
Motivação , Roedores , Animais , Dopamina/metabolismo , Gastos em Saúde , Camundongos , Proteínas do Tecido Nervoso/farmacologia , Ratos , Receptores Acoplados a Proteínas G , Recompensa , Roedores/metabolismo
10.
J Neurochem ; 112(2): 444-52, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19895663

RESUMO

L-DOPA-induced dyskinesia is characterised by debilitating involuntary movement, which limits quality of life in patients suffering from Parkinson's disease. Here, we investigate effects of the a2 adrenoceptor antagonist idazoxan on L-DOPA-induced dyskinesia as well as on alterations of extracellular L-DOPA and dopamine (DA) levels in the striatum in dyskinetic rats. Male Wistar rats were unilaterally lesioned with 6-hydroxydopamine and subsequently treated with L-DOPA/benserazide to induce stable dyskinetic movements.Administration of idazoxan [(9 mg/kg, intraperitoneal (i.p.)]significantly alleviated L-DOPA-induced dyskinesia, whereas idazoxan (3 mg/kg, i.p.) did not affect dyskinetic behaviour.Bilateral in vivo microdialysis revealed that idazoxan 9 mg/kg reduces extracellular peak L-DOPA levels in the lesioned and intact striatum as well as DA levels in the lesioned striatum. In parallel, the exposure to idazoxan in the striatum was monitored.Furthermore, no idazoxan and L-DOPA drug-drug interaction was found in plasma, brain tissue and CSF. In conclusion, the decrease of L-DOPA-derived extracellular DA levels in the lesioned striatum significantly contributes to the anti-dyskinetic effect of idazoxan.


Assuntos
Antagonistas Adrenérgicos alfa/uso terapêutico , Corpo Estriado/metabolismo , Dopamina/metabolismo , Discinesia Induzida por Medicamentos/tratamento farmacológico , Idazoxano/uso terapêutico , Adrenérgicos/toxicidade , Antagonistas Adrenérgicos alfa/farmacocinética , Análise de Variância , Animais , Antiparkinsonianos/efeitos adversos , Antiparkinsonianos/farmacocinética , Cromatografia Líquida de Alta Pressão/métodos , Corpo Estriado/efeitos dos fármacos , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/etiologia , Idazoxano/farmacocinética , Levodopa/efeitos adversos , Levodopa/farmacocinética , Masculino , Microdiálise/métodos , Síndromes Neurotóxicas/complicações , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Oxidopamina/toxicidade , Ratos , Ratos Wistar , Espectrometria de Massas em Tandem/métodos
11.
Synapse ; 64(2): 117-26, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19771592

RESUMO

In Parkinson's disease (PD), the long term use of L-DOPA results in major adverse effects including dyskinesia or abnormal involuntary movements. The present study focuses on the effect of the selective alpha(1) adrenoceptor antagonist HEAT (2-[[beta-(-4-hydroxyphenyl)ethyl]aminomethyl]-1-tetralone) in the 6-hydroxydopamine rat model of L-DOPA-induced dyskinesia. We demonstrate that the selective alpha(1) adrenoceptor antagonist HEAT (1 and 2 mg kg(-1)), the alpha(2) adrenoceptor antagonist idazoxan (9 mg kg(-1)), and the nonselective beta(1)/beta(2) adrenoceptor antagonist propranolol (20 mg kg(-1)) alleviate dyskinetic movements induced by L-DOPA. Furthermore, the adrenoceptor antagonists at the doses used did not influence exploratory behavior in the open field system indicating that the antidyskinetic effect is not due to a reduction in general motor activity. Intrastriatal administration of the selective alpha(1) adrenoceptor agonist cirazoline via reverse in vivo microdialysis did not induce dyskinesia. Additionally, we measured plasma, brain, and CSF levels of HEAT. HEAT is a CNS active compound with a brain/plasma and CSF/plasma ratio of 4.29 and 0.15, respectively, which is appropriate for the investigation of alpha(1)-mediated mechanisms in CNS disorders. In conclusion, these results demonstrated for the first time that a alpha(1) adrenoceptor antagonist reduced L-DOPA-induced dyskinesia in a rat model. Further studies assessing the risk benefit in comparison to existing therapies are needed before considering alpha(1) adrenoceptor antagonists as a target for the development of new antidyskinetic compounds.


Assuntos
Antagonistas Adrenérgicos alfa/farmacologia , Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Levodopa/efeitos adversos , Transtornos Parkinsonianos/tratamento farmacológico , Tetralonas/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 1 , Antagonistas Adrenérgicos alfa/farmacocinética , Antagonistas Adrenérgicos beta/farmacologia , Animais , Antiparkinsonianos/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Modelos Animais de Doenças , Idazoxano/farmacologia , Levodopa/uso terapêutico , Masculino , Atividade Motora/efeitos dos fármacos , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Plasma/metabolismo , Propranolol/farmacologia , Distribuição Aleatória , Ratos , Ratos Wistar , Receptores Adrenérgicos alfa 1/metabolismo , Tetralonas/farmacocinética
12.
Synapse ; 64(7): 533-41, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20196139

RESUMO

Short-acting dopamine (DA) agonists are usually administered several times a day resulting in fluctuating plasma and brain levels. DA agonists providing continuous dopaminergic stimulation may achieve higher therapeutic benefit for example by alleviating nocturnal disturbances as well as early morning akinesia. In the present study continuous release (CR) of pramipexole (PPX) was maintained by subcutaneous implantation of Alzet minipumps, whereas subcutaneous PPX injections were used to mimic PPX immediate release (IR) in male Wistar rats. In the catalepsy bar test, PPX-CR (1 mg/kg/day) reversed the haloperidol-induced motor impairment in the morning and over the whole observation period of 12h. In contrast, PPX-IR (tid 1 mg/kg, pre-treatment the day before) was not effective in the morning but catalepsy was reduced for 6 h after PPX-IR (1 mg/kg) injection. In the reserpine model, early morning akinesia indicated by the first motor activity measurement in the morning was significantly reversed by PPX-CR (2 mg/kg/day). Again, PPX-IR (tid 0.3 mg/kg, pre-treatment the day before) was not able to antagonise early morning akinesia. These results are in agreement with in vivo microdialysis measurements showing a continuous decrease of extracellular DA levels and a continuous PPX exposure in the PPX-CR (1 mg/kg/day) group. In contrast, PPX-IR (0.3 mg/kg) produced a transient decrease of extracellular DA levels over 6 h and showed maximum PPX levels 2 h after dosing which decreased over the following 6-8 h. The present study demonstrates that PPX-CR may offer a higher therapeutic benefit than PPX-IR on early morning akinesia and confirms earlier reports that PPX-IR reverses motor impairment for several hours.


Assuntos
Benzotiazóis/farmacologia , Agonistas de Dopamina/farmacologia , Discinesia Induzida por Medicamentos/tratamento farmacológico , Transtornos Parkinsonianos/tratamento farmacológico , Fotoperíodo , Animais , Benzotiazóis/administração & dosagem , Benzotiazóis/farmacocinética , Catalepsia/induzido quimicamente , Catalepsia/tratamento farmacológico , Catalepsia/metabolismo , Preparações de Ação Retardada/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Agonistas de Dopamina/administração & dosagem , Agonistas de Dopamina/farmacocinética , Discinesia Induzida por Medicamentos/metabolismo , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Haloperidol , Bombas de Infusão Implantáveis , Injeções Subcutâneas , Masculino , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Transtornos Parkinsonianos/metabolismo , Pramipexol , Ratos , Ratos Wistar , Reserpina , Fatores de Tempo
13.
J Sex Med ; 7(5): 1757-67, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20163532

RESUMO

INTRODUCTION: Hypoactive sexual desire disorder (HSDD) is defined as persistent lack of sexual fantasies or desire marked by distress. With a prevalence of 10% it is the most common form of female sexual dysfunction. Recently, the serotonin-1A (5-HT(1A)) receptor agonist and the serotonin-2A (5-HT(2A)) receptor antagonist flibanserin were shown to be safe and efficacious in premenopausal women suffering from HSDD in phase III clinical trials. AIM: The current study aims to assess the effect of flibanserin on neurotransmitters serotonin (5-HT), norepinephrine (NE), dopamine (DA), glutamate, and gamma-aminobutyric acid (GABA) in brain areas associated with sexual behavior. METHODS: Flibanserin was administered to female Wistar rats (280-350 g). Microdialysis probes were stereotactically inserted into the mPFC, NAC, or MPOA, under isoflurane anesthesia. The extracellular levels of neurotransmitters were assessed in freely moving animals, 24 hours after the surgery. MAIN OUTCOME MEASURES: Dialysate levels of DA, NE, and serotonin from medial prefrontal cortex (mPFC), nucleus accumbens (NAC), and hypothalamic medial preoptic area (MPOA) from female rats. RESULTS: Acute flibanserin administration decreased 5-HT and increased NE levels in all tested areas. DA was increased in mPFC and MPOA, but not in the NAC. Basal levels of NE in mPFC and NAC and of DA in mPFC were increased upon repeated flibanserin administration, when compared to vehicle-treated animals. The basal levels of 5-HT were not altered by repeated flibanserin administration, but basal DA and NE levels were increased in the mPFC. Glutamate and GABA levels remained unchanged following either repeated or acute flibanserin treatment. CONCLUSIONS: Systemic administration of flibanserin to female rats differentially affects the monoamine systems of the brain. This may be the mechanistic underpinning of flibanserin's therapeutic efficacy in HSDD, as sexual behavior is controlled by an intricate interplay between stimulatory (catecholaminergic) and inhibitory (serotonergic) systems.


Assuntos
Benzimidazóis/farmacologia , Encéfalo/efeitos dos fármacos , Neurotransmissores/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina , Agonistas do Receptor 5-HT2 de Serotonina , Animais , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Feminino , Microdiálise , Norepinefrina/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Área Pré-Óptica/efeitos dos fármacos , Ratos , Ratos Wistar , Serotonina/metabolismo
14.
15.
Neuropharmacology ; 178: 108246, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32771528

RESUMO

While neuropsychiatric drugs influence neural activity across multiple brain regions, the current understanding of their mechanism of action derives from studies that investigate an influence of a given drug onto a pre-selected and small number of brain regions. To understand how neuropsychiatric drugs affect coordinated activity across brain regions and to detect the brain regions most relevant to pharmacological action in an unbiased way, studies that assess brain-wide neuronal activity are paramount. Here, we used whole-brain immunostaining of the neuronal activity marker cFOS, and graph theory to generate brain-wide maps of neuronal activity upon pharmacological challenges. We generated brain-wide maps 2.5 h after treatment of the atypical dopamine transporter inhibitor modafinil (10, 30, and 100 mg/kg) or the vesicular monoamine transporter 2 inhibitor tetrabenazine (0.25, 0.5 and 1 mg/kg). Modafinil increased the number of cFOS positive neurons in a dose-dependent manner. Moreover, modafinil significantly reduced functional connectivity across the entire brain. Graph theory analysis revealed that modafinil decreased the node degree of cortical and subcortical regions at the three doses tested, followed by a reduction in global efficiency. Simultaneously, we identified highly interconnected hub regions that emerge exclusively upon modafinil treatment. These regions were the mediodorsal thalamus, periaqueductal gray, subiculum, and rhomboid nucleus. On the other hand, while tetrabenazine had mild effects on cFOS counts, it reduced functional connectivity across the entire brain, cortical node degree, and global efficiency. As hub regions, we identified the substantia innominata and ventral pallidum. Our results uncovered novel mechanisms of action at a brain-wide scale for modafinil and tetrabenazine. Our analytical approach offers a tool to characterize signatures of whole-brain functional connectivity for drug candidates and to identify potential undesired effects at a mesoscopic scale. Additionally, it offers a guide towards targeted experiments on newly identified hub regions.


Assuntos
Química Encefálica/fisiologia , Mapeamento Encefálico/métodos , Encéfalo/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Rede Nervosa/metabolismo , Inibidores da Captação Adrenérgica/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modafinila/farmacologia , Rede Nervosa/química , Rede Nervosa/efeitos dos fármacos , Tetrabenazina/farmacologia
16.
Neuropharmacology ; 171: 108072, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32243874

RESUMO

Quantitative Electroencephalography (qEEG) and event-related potential (ERP) assessment have emerged as powerful tools to unravel translational biomarkers in preclinical and clinical psychiatric drug discovery trials. The aim of the present study was to compare the GluN2B negative allosteric modulator (NAM) traxoprodil (CP-101,606) with the unselective NMDA receptor channel blocker S-ketamine to give insight into central target engagement and differentiation on multiple EEG readouts. For qEEG recordings telemetric transmitters were implanted in male Wistar rats. Recorded EEG data were analyzed using fast Fourier transformation to determine power spectra and vigilance states. Additionally, body temperature and locomotor activity were assessed via telemetry. For recordings of auditory event-related potentials (AERP) male C57Bl/6J mice were chronically implanted with deep electrodes using a tethered system. Power spectral analysis revealed a significant increase in gamma power following ketamine treatment, whereas traxoprodil (6&18 mg/kg) induced an overall decrease primarily within alpha and beta bands. Additionally, ketamine disrupted sleep and enhanced time spent in wake vigilance states, whereas traxoprodil did not alter sleep-wake architecture. AERP and mismatch negativity (MMN) revealed that ketamine (10 mg/kg) selectively disrupts auditory deviance detection, whereas traxoprodil (6 mg/kg) did not alter MMN at clinically relevant doses. In contrast to ketamine treatment, traxoprodil did not produce hyperactivity and hypothermia. In conclusion, ketamine and traxoprodil showed very different effects on diverse EEG readouts differentiating selective GluN2B antagonism from non-selective pan-NMDA-R antagonists like ketamine. These readouts are thus perfectly suited to support drug discovery efforts on NMDA-R and understanding the different functions of NMDA-R subtypes.


Assuntos
Eletroencefalografia/efeitos dos fármacos , Potenciais Evocados Auditivos/efeitos dos fármacos , Ketamina/farmacologia , Piperidinas/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Ritmo alfa/efeitos dos fármacos , Animais , Ritmo beta/efeitos dos fármacos , Biomarcadores , Temperatura Corporal/efeitos dos fármacos , Eletrodos Implantados , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Wistar , Sono/efeitos dos fármacos , Pesquisa Translacional Biomédica
17.
Sci Rep ; 9(1): 2811, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808966

RESUMO

The amino-acids tryptophan, phenylalanine and tyrosine seem to play an important role in the pathophysiology of depressive disorders. We measured daily brain extracellular levels of these amino-acids using cerebral microdialysis (CMD) and high performance liquid chromatography in 26 consecutive subarachnoid hemorrhage (SAH) patients and associated them with the presence of depressive disorders. Patients were grouped as follows: medical history of depression (prior to SAH), antidepressant intake 12 months after SAH (but not before), or neither. CMD-tryptophan, CMD-phenylalanine and CMD-tyrosine levels were significantly lower in patients with preexisting depressive disorders compared to those without depression (p < 0.01). Disease severity and SAH-related complications were not associated with amino-acid concentrations. We found a positive correlation between nutritionally administered and brain interstitial levels of tryptophan and phenylalanine in non-depressed patients (R = 0.26 and R = 0.24, p < 0.05), which was not present in patients with preexisting depression (p > 0.1). In conclusion, brain interstitial levels of tryptophan, phenylalanine and tyrosine measured in the context of the clinical management of SAH were significantly decreased in patients with a medical history of depression. This study supports the hypothesis that the availability of these neurotransmitter precursor amino-acids in the human brain may play an important role in the pathophysiology of depressive disorders.


Assuntos
Aminoácidos/análise , Encéfalo/metabolismo , Depressão/metabolismo , Hemorragia Subaracnóidea/complicações , Idoso , Depressão/etiologia , Feminino , Humanos , Masculino , Microdiálise , Pessoa de Meia-Idade , Fenilalanina/análise , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/fisiopatologia , Triptofano/análise , Tirosina/análise
18.
Cell Rep ; 29(9): 2862-2874.e9, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31775051

RESUMO

Intracellular accumulation of α-synuclein (α-syn) and formation of Lewy bodies are neuropathological characteristics of Parkinson's disease (PD) and related α-synucleinopathies. Oligomerization and spreading of α-syn from neuron to neuron have been suggested as key events contributing to the progression of PD. To directly visualize and characterize α-syn oligomerization and spreading in vivo, we generated two independent conditional transgenic mouse models based on α-syn protein complementation assays using neuron-specifically expressed split Gaussia luciferase or split Venus yellow fluorescent protein (YFP). These transgenic mice allow direct assessment of the quantity and subcellular distribution of α-syn oligomers in vivo. Using these mouse models, we demonstrate an age-dependent accumulation of a specific subtype of α-syn oligomers. We provide in vivo evidence that, although α-syn is found throughout neurons, α-syn oligomerization takes place at the presynapse. Furthermore, our mouse models provide strong evidence for a transsynaptic cell-to-cell transfer of de novo generated α-syn oligomers in vivo.


Assuntos
Neurônios/metabolismo , Doença de Parkinson/genética , alfa-Sinucleína/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos
19.
Neurosci Lett ; 443(3): 204-8, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18657593

RESUMO

The present study examines striatal monoamine changes in a murine model of levodopa-induced dyskinesia (LID), a common side effect of Parkinson's disease (PD) therapy. Mice previously exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and later made hyperactive with high-dose (200mg/kg, i.p.) exogenous levodopa were compared to mice with normal motor behavior who received either levodopa without previous MPTP or no treatment at all. Using high-performance liquid chromatography, dopamine (DA), serotonin (5HT), noradrenaline (NA) and their metabolites were then measured in samples of striatum versus olfactory bulbs as controls. In the olfactory bulb, exogenous levodopa caused increased DA levels and increased DA-, 5HT- and NA-turnover rates, but decreased 5HT and NA levels, regardless of animal activity. These trends were also seen in the striatum, but animals with LID seemed to have unique differences. Thus, in mice sacrificed at the height of their hyperactive LID behavior, striatal DA and 5HT were significantly lower and DA- and 5HT-turnover rates were significantly higher than control animals with normal motor behavior, regardless of levodopa exposure. In addition, the expected increased NA-turnover rate seen in other specimens from animals exposed to levodopa was not seen in the striatum of LID mice. The results of the present study demonstrate that there is a distinct profile of striatal monoamines conducive to LID that must be considered when trying to explain the effects of anti-LID drugs utilizing monoamine receptors.


Assuntos
Antiparkinsonianos/efeitos adversos , Monoaminas Biogênicas/metabolismo , Corpo Estriado/metabolismo , Hipercinese/induzido quimicamente , Hipercinese/patologia , Levodopa/efeitos adversos , Análise de Variância , Animais , Cromatografia Líquida de Alta Pressão/métodos , Corpo Estriado/efeitos dos fármacos , Modelos Animais de Doenças , Eletroquímica/métodos , Intoxicação por MPTP/tratamento farmacológico , Intoxicação por MPTP/patologia , Camundongos , Camundongos Endogâmicos C57BL , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/metabolismo
20.
Neurobiol Aging ; 66: 97-111, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29550548

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) age-dependently cause Parkinson's disease and are associated with several inflammatory diseases. So far, the potential role of LRRK2 expression in glial cells as mediators of neuroinflammation and the influence of aging have not been investigated in viral vector-based LRRK2 animal models. In this study, we compared the effect of striatal injection of high-capacity adenoviral vectors expressing either a kinase-overactive LRRK2 with the familial G2019S mutation or a kinase-inactive LRRK2 variant in young and old C57BL/6J mice. The intrinsic adenovirus tropism guided preferentially glial transduction, and the vector design led to stable expression for at least 6 months. In histopathological analysis, young mice expressing either LRRK2 variant presented with transient vacuolization of striatal white fiber tracts accompanied by accumulation of microglial cells and astrogliosis, but inflammation resolved without permanent damage. Old mice had a stronger and prolonged inflammatory reaction and experienced permanent damage in form of partial neuron loss after 3 months exclusively in case of LRRK2_G2019S expression. The autophagic receptor p62 accumulated in cells with high levels of either LRRK2 variant, even more so in old mice. We conclude that the aging mouse brain is more susceptible to LRRK2-associated pathology, and in this model, glial LRRK2 expression significantly contributed to neuroinflammation, ultimately causing neurodegeneration.


Assuntos
Adenoviridae/genética , Envelhecimento/genética , Envelhecimento/patologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Expressão Gênica , Vetores Genéticos/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Animais , Modelos Animais de Doenças , Predisposição Genética para Doença/genética , Inflamação/etiologia , Inflamação/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Mutação , Neuroglia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA