RESUMO
The SARS-CoV-2 lineage B.1.1.7, designated variant of concern (VOC) 202012/01 by Public Health England1, was first identified in the UK in late summer to early autumn 20202. Whole-genome SARS-CoV-2 sequence data collected from community-based diagnostic testing for COVID-19 show an extremely rapid expansion of the B.1.1.7 lineage during autumn 2020, suggesting that it has a selective advantage. Here we show that changes in VOC frequency inferred from genetic data correspond closely to changes inferred by S gene target failures (SGTF) in community-based diagnostic PCR testing. Analysis of trends in SGTF and non-SGTF case numbers in local areas across England shows that B.1.1.7 has higher transmissibility than non-VOC lineages, even if it has a different latent period or generation time. The SGTF data indicate a transient shift in the age composition of reported cases, with cases of B.1.1.7 including a larger share of under 20-year-olds than non-VOC cases. We estimated time-varying reproduction numbers for B.1.1.7 and co-circulating lineages using SGTF and genomic data. The best-supported models did not indicate a substantial difference in VOC transmissibility among different age groups, but all analyses agreed that B.1.1.7 has a substantial transmission advantage over other lineages, with a 50% to 100% higher reproduction number.
Assuntos
COVID-19/transmissão , COVID-19/virologia , Filogenia , SARS-CoV-2/classificação , SARS-CoV-2/patogenicidade , Adolescente , Adulto , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Número Básico de Reprodução , COVID-19/diagnóstico , COVID-19/epidemiologia , Criança , Pré-Escolar , Inglaterra/epidemiologia , Evolução Molecular , Genoma Viral/genética , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/análise , Glicoproteína da Espícula de Coronavírus/genética , Fatores de Tempo , Adulto JovemRESUMO
Following the detection of the new coronavirus1 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its spread outside of China, Europe has experienced large epidemics of coronavirus disease 2019 (COVID-19). In response, many European countries have implemented non-pharmaceutical interventions, such as the closure of schools and national lockdowns. Here we study the effect of major interventions across 11 European countries for the period from the start of the COVID-19 epidemics in February 2020 until 4 May 2020, when lockdowns started to be lifted. Our model calculates backwards from observed deaths to estimate transmission that occurred several weeks previously, allowing for the time lag between infection and death. We use partial pooling of information between countries, with both individual and shared effects on the time-varying reproduction number (Rt). Pooling allows for more information to be used, helps to overcome idiosyncrasies in the data and enables more-timely estimates. Our model relies on fixed estimates of some epidemiological parameters (such as the infection fatality rate), does not include importation or subnational variation and assumes that changes in Rt are an immediate response to interventions rather than gradual changes in behaviour. Amidst the ongoing pandemic, we rely on death data that are incomplete, show systematic biases in reporting and are subject to future consolidation. We estimate that-for all of the countries we consider here-current interventions have been sufficient to drive Rt below 1 (probability Rt < 1.0 is greater than 99%) and achieve control of the epidemic. We estimate that across all 11 countries combined, between 12 and 15 million individuals were infected with SARS-CoV-2 up to 4 May 2020, representing between 3.2% and 4.0% of the population. Our results show that major non-pharmaceutical interventions-and lockdowns in particular-have had a large effect on reducing transmission. Continued intervention should be considered to keep transmission of SARS-CoV-2 under control.
Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Número Básico de Reprodução , COVID-19 , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/transmissão , Europa (Continente)/epidemiologia , Humanos , Pneumonia Viral/mortalidade , Pneumonia Viral/transmissãoRESUMO
On 21 February 2020, a resident of the municipality of Vo', a small town near Padua (Italy), died of pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection1. This was the first coronavirus disease 19 (COVID-19)-related death detected in Italy since the detection of SARS-CoV-2 in the Chinese city of Wuhan, Hubei province2. In response, the regional authorities imposed the lockdown of the whole municipality for 14 days3. Here we collected information on the demography, clinical presentation, hospitalization, contact network and the presence of SARS-CoV-2 infection in nasopharyngeal swabs for 85.9% and 71.5% of the population of Vo' at two consecutive time points. From the first survey, which was conducted around the time the town lockdown started, we found a prevalence of infection of 2.6% (95% confidence interval (CI): 2.1-3.3%). From the second survey, which was conducted at the end of the lockdown, we found a prevalence of 1.2% (95% CI: 0.8-1.8%). Notably, 42.5% (95% CI: 31.5-54.6%) of the confirmed SARS-CoV-2 infections detected across the two surveys were asymptomatic (that is, did not have symptoms at the time of swab testing and did not develop symptoms afterwards). The mean serial interval was 7.2 days (95% CI: 5.9-9.6). We found no statistically significant difference in the viral load of symptomatic versus asymptomatic infections (P = 0.62 and 0.74 for E and RdRp genes, respectively, exact Wilcoxon-Mann-Whitney test). This study sheds light on the frequency of asymptomatic SARS-CoV-2 infection, their infectivity (as measured by the viral load) and provides insights into its transmission dynamics and the efficacy of the implemented control measures.
Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Surtos de Doenças/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Infecções Assintomáticas/epidemiologia , Betacoronavirus/enzimologia , Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , COVID-19 , Criança , Pré-Escolar , Proteínas do Envelope de Coronavírus , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , RNA-Polimerase RNA-Dependente de Coronavírus , Surtos de Doenças/estatística & dados numéricos , Feminino , Humanos , Lactente , Recém-Nascido , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Prevalência , RNA Polimerase Dependente de RNA/genética , SARS-CoV-2 , Proteínas do Envelope Viral/genética , Carga Viral , Proteínas não Estruturais Virais/genética , Adulto JovemRESUMO
Considerable spatial heterogeneity has been observed in COVID-19 transmission across administrative areas of England throughout the pandemic. This study investigates what drives these differences. We constructed a probabilistic case count model for 306 administrative areas of England across 95 weeks, fit using a Bayesian evidence synthesis framework. We incorporate the impact of acquired immunity, of spatial exportation of cases, and 16 spatially-varying socio-economic, socio-demographic, health, and mobility variables. Model comparison assesses the relative contributions of these respective mechanisms. We find that spatially-varying and time-varying differences in week-to-week transmission were definitively associated with differences in: time spent at home, variant-of-concern proportion, and adult social care funding. However, model comparison demonstrates that the impact of these terms is negligible compared to the role of spatial exportation between administrative areas. While these results confirm the impact of some, but not all, static measures of spatially-varying inequity in England, our work corroborates the finding that observed differences in disease transmission during the pandemic were predominantly driven by underlying epidemiological factors rather than aggregated metrics of demography and health inequity between areas. Further work is required to assess how health inequity more broadly contributes to these epidemiological factors.
Assuntos
Teorema de Bayes , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/transmissão , COVID-19/epidemiologia , Inglaterra/epidemiologia , Pandemias/estatística & dados numéricos , Fatores Socioeconômicos , Disparidades nos Níveis de Saúde , Modelos EstatísticosRESUMO
Dengue virus (DENV) is a public health challenge across the tropics and subtropics. Currently, there is no licensed prophylactic or antiviral treatment for dengue. The novel DENV inhibitor JNJ-1802 can significantly reduce viral load in mice and non-human primates. Here, using a mechanistic viral kinetic model calibrated against viral RNA data from experimental in-vitro infection studies, we assess the in-vitro inhibitory effect of JNJ-1802 by characterising infection dynamics of two DENV-2 strains in the absence and presence of different JNJ-1802 concentrations. Viral RNA suppression to below the limit of detection was achieved at concentrations of >1.6 nM, with a median concentration exhibiting 50% of maximal inhibitory effect (IC50) of 1.23x10-02 nM and 1.28x10-02 nM for the DENV-2/RL and DENV-2/16681 strains, respectively. This work provides important insight into the in-vitro inhibitory effect of JNJ-1802 and presents a first step towards a modelling framework to support characterization of viral kinetics and drug effect across different host systems.
Assuntos
Vírus da Dengue , Dengue , Animais , Camundongos , RNA Viral/genética , Dengue/tratamento farmacológico , Antivirais/farmacologia , Replicação ViralRESUMO
Mosquito-borne diseases remain a major cause of morbidity and mortality across the tropical regions. Despite much progress in the control of malaria, malaria-associated morbidity remains high, whereas arboviruses-most notably dengue-are responsible for a rising burden of disease, even in middle-income countries that have almost completely eliminated malaria. Here I discuss how new interventions offer the promise of considerable future reductions in disease burden. However, I emphasize that intervention programmes need to be underpinned by rigorous trials and quantitative epidemiological analyses. Such analyses suggest that the long-term goal of elimination is more feasible for dengue than for malaria, even if malaria elimination would offer greater overall health benefit to the public.
Assuntos
Dengue/prevenção & controle , Malária/prevenção & controle , Controle de Mosquitos/métodos , Animais , Dengue/mortalidade , Dengue/transmissão , Tecnologia de Impulso Genético , Objetivos , Humanos , Incidência , Malária/mortalidade , Malária/transmissão , Mosquitos Vetores/genética , Mosquitos Vetores/microbiologia , Controle Biológico de Vetores/métodos , Vacinas , Wolbachia/patogenicidadeRESUMO
BACKGROUND: Vaccines have reduced severe disease and death from Coronavirus Disease 2019 (COVID-19). However, with evidence of waning efficacy coupled with continued evolution of the virus, health programmes need to evaluate the requirement for regular booster doses, considering their impact and cost-effectiveness in the face of ongoing transmission and substantial infection-induced immunity. METHODS AND FINDINGS: We developed a combined immunological-transmission model parameterised with data on transmissibility, severity, and vaccine effectiveness. We simulated Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) transmission and vaccine rollout in characteristic global settings with different population age-structures, contact patterns, health system capacities, prior transmission, and vaccine uptake. We quantified the impact of future vaccine booster dose strategies with both ancestral and variant-adapted vaccine products, while considering the potential future emergence of new variants with modified transmission, immune escape, and severity properties. We found that regular boosting of the oldest age group (75+) is an efficient strategy, although large numbers of hospitalisations and deaths could be averted by extending vaccination to younger age groups. In countries with low vaccine coverage and high infection-derived immunity, boosting older at-risk groups was more effective than continuing primary vaccination into younger ages in our model. Our study is limited by uncertainty in key parameters, including the long-term durability of vaccine and infection-induced immunity as well as uncertainty in the future evolution of the virus. CONCLUSIONS: Our modelling suggests that regular boosting of the high-risk population remains an important tool to reduce morbidity and mortality from current and future SARS-CoV-2 variants. Our results suggest that focusing vaccination in the highest-risk cohorts will be the most efficient (and hence cost-effective) strategy to reduce morbidity and mortality.
Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2 , COVID-19/prevenção & controle , VacinaçãoRESUMO
BACKGROUND: The omicron variant (B.1.1.529) of SARS-CoV-2 has demonstrated partial vaccine escape and high transmissibility, with early studies indicating lower severity of infection than that of the delta variant (B.1.617.2). We aimed to better characterise omicron severity relative to delta by assessing the relative risk of hospital attendance, hospital admission, or death in a large national cohort. METHODS: Individual-level data on laboratory-confirmed COVID-19 cases resident in England between Nov 29, 2021, and Jan 9, 2022, were linked to routine datasets on vaccination status, hospital attendance and admission, and mortality. The relative risk of hospital attendance or admission within 14 days, or death within 28 days after confirmed infection, was estimated using proportional hazards regression. Analyses were stratified by test date, 10-year age band, ethnicity, residential region, and vaccination status, and were further adjusted for sex, index of multiple deprivation decile, evidence of a previous infection, and year of age within each age band. A secondary analysis estimated variant-specific and vaccine-specific vaccine effectiveness and the intrinsic relative severity of omicron infection compared with delta (ie, the relative risk in unvaccinated cases). FINDINGS: The adjusted hazard ratio (HR) of hospital attendance (not necessarily resulting in admission) with omicron compared with delta was 0·56 (95% CI 0·54-0·58); for hospital admission and death, HR estimates were 0·41 (0·39-0·43) and 0·31 (0·26-0·37), respectively. Omicron versus delta HR estimates varied with age for all endpoints examined. The adjusted HR for hospital admission was 1·10 (0·85-1·42) in those younger than 10 years, decreasing to 0·25 (0·21-0·30) in 60-69-year-olds, and then increasing to 0·47 (0·40-0·56) in those aged at least 80 years. For both variants, past infection gave some protection against death both in vaccinated (HR 0·47 [0·32-0·68]) and unvaccinated (0·18 [0·06-0·57]) cases. In vaccinated cases, past infection offered no additional protection against hospital admission beyond that provided by vaccination (HR 0·96 [0·88-1·04]); however, for unvaccinated cases, past infection gave moderate protection (HR 0·55 [0·48-0·63]). Omicron versus delta HR estimates were lower for hospital admission (0·30 [0·28-0·32]) in unvaccinated cases than the corresponding HR estimated for all cases in the primary analysis. Booster vaccination with an mRNA vaccine was highly protective against hospitalisation and death in omicron cases (HR for hospital admission 8-11 weeks post-booster vs unvaccinated: 0·22 [0·20-0·24]), with the protection afforded after a booster not being affected by the vaccine used for doses 1 and 2. INTERPRETATION: The risk of severe outcomes following SARS-CoV-2 infection is substantially lower for omicron than for delta, with higher reductions for more severe endpoints and significant variation with age. Underlying the observed risks is a larger reduction in intrinsic severity (in unvaccinated individuals) counterbalanced by a reduction in vaccine effectiveness. Documented previous SARS-CoV-2 infection offered some protection against hospitalisation and high protection against death in unvaccinated individuals, but only offered additional protection in vaccinated individuals for the death endpoint. Booster vaccination with mRNA vaccines maintains over 70% protection against hospitalisation and death in breakthrough confirmed omicron infections. FUNDING: Medical Research Council, UK Research and Innovation, Department of Health and Social Care, National Institute for Health Research, Community Jameel, and Engineering and Physical Sciences Research Council.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos de Coortes , Inglaterra/epidemiologia , Hospitalização , Humanos , Vacinas Sintéticas , Vacinas de mRNARESUMO
BACKGROUND: Phase III trials have estimated coronavirus disease 2019 (COVID-19) vaccine efficacy (VE) against symptomatic and asymptomatic infection. We explore the direction and magnitude of potential biases in these estimates and their implications for vaccine protection against infection and against disease in breakthrough infections. METHODS: We developed a mathematical model that accounts for natural and vaccine-induced immunity, changes in serostatus, and imperfect sensitivity and specificity of tests for infection and antibodies. We estimated expected biases in VE against symptomatic, asymptomatic, and any severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and against disease following infection for a range of vaccine characteristics and measurement approaches, and the likely overall biases for published trial results that included asymptomatic infections. RESULTS: VE against asymptomatic infection measured by polymerase chain reaction (PCR) or serology is expected to be low or negative for vaccines that prevent disease but not infection. VE against any infection is overestimated when asymptomatic infections are less likely to be detected than symptomatic infections and the vaccine protects against symptom development. A competing bias toward underestimation arises for estimates based on tests with imperfect specificity, especially when testing is performed frequently. Our model indicates considerable uncertainty in Oxford-AstraZeneca ChAdOx1 and Janssen Ad26.COV2.S VE against any infection, with slightly higher than published, bias-adjusted values of 59.0% (95% uncertainty interval [UI] 38.4-77.1) and 70.9% (95% UI 49.8-80.7), respectively. CONCLUSIONS: Multiple biases are likely to influence COVID-19 VE estimates, potentially explaining the observed difference between ChAdOx1 and Ad26.COV2.S vaccines. These biases should be considered when interpreting both efficacy and effectiveness study results.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Ad26COVS1 , Infecções Assintomáticas , Viés , COVID-19/prevenção & controle , Humanos , SARS-CoV-2 , Eficácia de VacinasRESUMO
BACKGROUND: England's COVID-19 roadmap out of lockdown policy set out the timeline and conditions for the stepwise lifting of non-pharmaceutical interventions (NPIs) as vaccination roll-out continued, with step one starting on March 8, 2021. In this study, we assess the roadmap, the impact of the delta (B.1.617.2) variant of SARS-CoV-2, and potential future epidemic trajectories. METHODS: This mathematical modelling study was done to assess the UK Government's four-step process to easing lockdown restrictions in England, UK. We extended a previously described model of SARS-CoV-2 transmission to incorporate vaccination and multi-strain dynamics to explicitly capture the emergence of the delta variant. We calibrated the model to English surveillance data, including hospital admissions, hospital occupancy, seroprevalence data, and population-level PCR testing data using a Bayesian evidence synthesis framework, then modelled the potential trajectory of the epidemic for a range of different schedules for relaxing NPIs. We estimated the resulting number of daily infections and hospital admissions, and daily and cumulative deaths. Three scenarios spanning a range of optimistic to pessimistic vaccine effectiveness, waning natural immunity, and cross-protection from previous infections were investigated. We also considered three levels of mixing after the lifting of restrictions. FINDINGS: The roadmap policy was successful in offsetting the increased transmission resulting from lifting NPIs starting on March 8, 2021, with increasing population immunity through vaccination. However, because of the emergence of the delta variant, with an estimated transmission advantage of 76% (95% credible interval [95% CrI] 69-83) over alpha, fully lifting NPIs on June 21, 2021, as originally planned might have led to 3900 (95% CrI 1500-5700) peak daily hospital admissions under our central parameter scenario. Delaying until July 19, 2021, reduced peak hospital admissions by three fold to 1400 (95% CrI 700-1700) per day. There was substantial uncertainty in the epidemic trajectory, with particular sensitivity to the transmissibility of delta, level of mixing, and estimates of vaccine effectiveness. INTERPRETATION: Our findings show that the risk of a large wave of COVID-19 hospital admissions resulting from lifting NPIs can be substantially mitigated if the timing of NPI relaxation is carefully balanced against vaccination coverage. However, with the delta variant, it might not be possible to fully lift NPIs without a third wave of hospital admissions and deaths, even if vaccination coverage is high. Variants of concern, their transmissibility, vaccine uptake, and vaccine effectiveness must be carefully monitored as countries relax pandemic control measures. FUNDING: National Institute for Health Research, UK Medical Research Council, Wellcome Trust, and UK Foreign, Commonwealth and Development Office.
Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , COVID-19/transmissão , Controle de Doenças Transmissíveis/organização & administração , SARS-CoV-2 , Cobertura Vacinal/organização & administração , COVID-19/epidemiologia , COVID-19/mortalidade , Inglaterra/epidemiologia , Mortalidade Hospitalar/tendências , Hospitalização/estatística & dados numéricos , Humanos , Modelos Teóricos , Admissão do Paciente/estatística & dados numéricosRESUMO
BACKGROUND: The past two decades have seen expansion of childhood vaccination programmes in low-income and middle-income countries (LMICs). We quantify the health impact of these programmes by estimating the deaths and disability-adjusted life-years (DALYs) averted by vaccination against ten pathogens in 98 LMICs between 2000 and 2030. METHODS: 16 independent research groups provided model-based disease burden estimates under a range of vaccination coverage scenarios for ten pathogens: hepatitis B virus, Haemophilus influenzae type B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, Streptococcus pneumoniae, rotavirus, rubella, and yellow fever. Using standardised demographic data and vaccine coverage, the impact of vaccination programmes was determined by comparing model estimates from a no-vaccination counterfactual scenario with those from a reported and projected vaccination scenario. We present deaths and DALYs averted between 2000 and 2030 by calendar year and by annual birth cohort. FINDINGS: We estimate that vaccination of the ten selected pathogens will have averted 69 million (95% credible interval 52-88) deaths between 2000 and 2030, of which 37 million (30-48) were averted between 2000 and 2019. From 2000 to 2019, this represents a 45% (36-58) reduction in deaths compared with the counterfactual scenario of no vaccination. Most of this impact is concentrated in a reduction in mortality among children younger than 5 years (57% reduction [52-66]), most notably from measles. Over the lifetime of birth cohorts born between 2000 and 2030, we predict that 120 million (93-150) deaths will be averted by vaccination, of which 58 million (39-76) are due to measles vaccination and 38 million (25-52) are due to hepatitis B vaccination. We estimate that increases in vaccine coverage and introductions of additional vaccines will result in a 72% (59-81) reduction in lifetime mortality in the 2019 birth cohort. INTERPRETATION: Increases in vaccine coverage and the introduction of new vaccines into LMICs have had a major impact in reducing mortality. These public health gains are predicted to increase in coming decades if progress in increasing coverage is sustained. FUNDING: Gavi, the Vaccine Alliance and the Bill & Melinda Gates Foundation.
Assuntos
Controle de Doenças Transmissíveis , Doenças Transmissíveis/mortalidade , Doenças Transmissíveis/virologia , Modelos Teóricos , Mortalidade/tendências , Anos de Vida Ajustados por Qualidade de Vida , Vacinação , Pré-Escolar , Controle de Doenças Transmissíveis/economia , Controle de Doenças Transmissíveis/estatística & dados numéricos , Doenças Transmissíveis/economia , Análise Custo-Benefício , Países em Desenvolvimento , Feminino , Saúde Global , Humanos , Programas de Imunização , Masculino , Vacinação/economia , Vacinação/estatística & dados numéricosRESUMO
The spatial dynamics of epidemics are fundamentally affected by patterns of human mobility. Mobile phone call detail records (CDRs) are a rich source of mobility data, and allow semi-mechanistic models of movement to be parameterised even for resource-poor settings. While the gravity model typically reproduces human movement reasonably well at the administrative level spatial scale, past studies suggest that parameter estimates vary with the level of spatial discretisation at which models are fitted. Given that privacy concerns usually preclude public release of very fine-scale movement data, such variation would be problematic for individual-based simulations of epidemic spread parametrised at a fine spatial scale. We therefore present new methods to fit fine-scale mathematical mobility models (here we implement variants of the gravity and radiation models) to spatially aggregated movement data and investigate how model parameter estimates vary with spatial resolution. We use gridded population data at 1km resolution to derive population counts at different spatial scales (down to â¼ 5km grids) and implement mobility models at each scale. Parameters are estimated from administrative-level flow data between overnight locations in Kenya and Namibia derived from CDRs: where the model spatial resolution exceeds that of the mobility data, we compare the flow data between a particular origin and destination with the sum of all model flows between cells that lie within those particular origin and destination administrative units. Clear evidence of over-dispersion supports the use of negative binomial instead of Poisson likelihood for count data with high values. Radiation models use fewer parameters than the gravity model and better predict trips between overnight locations for both considered countries. Results show that estimates for some parameters change between countries and with spatial resolution and highlight how imperfect flow data and spatial population distribution can influence model fit.
Assuntos
Telefone Celular , Simulação por Computador , Armazenamento e Recuperação da Informação , Dinâmica Populacional , Epidemias , Humanos , Quênia , Modelos Estatísticos , Método de Monte Carlo , Namíbia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , ViagemRESUMO
BACKGROUND: Understanding the characteristics and natural history of novel pathogens is crucial to inform successful control measures. Japan was one of the first affected countries in the COVID-19 pandemic reporting their first case on 14 January 2020. Interventions including airport screening, contact tracing, and cluster investigations were quickly implemented. Here we present insights from the first 3 months of the epidemic in Japan based on detailed case data. METHODS: We conducted descriptive analyses based on information systematically extracted from individual case reports from 13 January to 31 March 2020 including patient demographics, date of report and symptom onset, symptom progression, travel history, and contact type. We analysed symptom progression and estimated the time-varying reproduction number, Rt, correcting for epidemic growth using an established Bayesian framework. Key delays and the age-specific probability of transmission were estimated using data on exposures and transmission pairs. RESULTS: The corrected fitted mean onset-to-reporting delay after the peak was 4 days (standard deviation: ± 2 days). Early transmission was driven primarily by returning travellers with Rt peaking at 2.4 (95% CrI: 1.6, 3.3) nationally. In the final week of the trusted period (16-23 March 2020), Rt accounting for importations diverged from overall Rt at 1.1 (95% CrI: 1.0, 1.2) compared to 1.5 (95% CrI: 1.3, 1.6), respectively. Household (39.0%) and workplace (11.6%) exposures were the most frequently reported potential source of infection. The estimated probability of transmission was assortative by age with individuals more likely to infect, and be infected by, contacts in a similar age group to them. Across all age groups, cases most frequently onset with cough, fever, and fatigue. There were no reported cases of patients < 20 years old developing pneumonia or severe respiratory symptoms. CONCLUSIONS: Information collected in the early phases of an outbreak are important in characterising any novel pathogen. The availability of timely and detailed data and appropriate analyses is critical to estimate and understand a pathogen's transmissibility, high-risk settings for transmission, and key symptoms. These insights can help to inform urgent response strategies.
Assuntos
COVID-19 , Adulto , Teorema de Bayes , COVID-19/epidemiologia , Humanos , Japão/epidemiologia , Pandemias/prevenção & controle , SARS-CoV-2 , Adulto JovemRESUMO
BACKGROUND: Evidence to date has shown that inequality in health, and vaccination coverage in particular, can have ramifications to wider society. However, whilst individual studies have sought to characterise these heterogeneities in immunisation coverage at national level, few have taken a broad and quantitative view of the contributing factors to heterogeneity in immunisation coverage and impact, i.e. the number of cases, deaths, and disability-adjusted life years averted. This systematic review aims to highlight these geographic, demographic, and sociodemographic characteristics through a qualitative and quantitative approach, vital to prioritise and optimise vaccination policies. METHODS: A systematic review of two databases (PubMed and Web of Science) was undertaken using search terms and keywords to identify studies examining factors on immunisation inequality and heterogeneity in vaccination coverage. Inclusion criteria were applied independently by two researchers. Studies including data on key characteristics of interest were further analysed through a meta-analysis to produce a pooled estimate of the risk ratio using a random effects model for that characteristic. RESULTS: One hundred and eight studies were included in this review. We found that inequalities in wealth, education, and geographic access can affect vaccine impact and vaccination dropout. We estimated those living in rural areas were not significantly different in terms of full vaccination status compared to urban areas but noted considerable heterogeneity between countries. We found that females were 3% (95%CI[1%, 5%]) less likely to be fully vaccinated than males. Additionally, we estimated that children whose mothers had no formal education were 28% (95%CI[18%,47%]) less likely to be fully vaccinated than those whose mother had primary level, or above, education. Finally, we found that individuals in the poorest wealth quintile were 27% (95%CI [16%,37%]) less likely to be fully vaccinated than those in the richest. CONCLUSIONS: We found a nuanced picture of inequality in vaccination coverage and access with wealth disparity dominating, and likely driving, other disparities. This review highlights the complex landscape of inequity and further need to design vaccination strategies targeting missed subgroups to improve and recover vaccination coverage following the COVID-19 pandemic. TRIAL REGISTRATION: Prospero, CRD42021261927.
Assuntos
COVID-19 , Vacinas , Criança , Países em Desenvolvimento , Feminino , Humanos , Masculino , Pandemias , Vacinação , Cobertura VacinalRESUMO
BACKGROUND: Understanding the drivers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission is crucial for control policies, but evidence of transmission rates in different settings remains limited. METHODS: We conducted a systematic review to estimate secondary attack rates (SARs) and observed reproduction numbers (Robs) in different settings exploring differences by age, symptom status, and duration of exposure. To account for additional study heterogeneity, we employed a beta-binomial model to pool SARs across studies and a negative-binomial model to estimate Robs. RESULTS: Households showed the highest transmission rates, with a pooled SAR of 21.1% (95% confidence interval [CI]:17.4-24.8). SARs were significantly higher where the duration of household exposure exceeded 5 days compared with exposure of ≤5 days. SARs related to contacts at social events with family and friends were higher than those for low-risk casual contacts (5.9% vs 1.2%). Estimates of SARs and Robs for asymptomatic index cases were approximately one-seventh, and for presymptomatic two-thirds of those for symptomatic index cases. We found some evidence for reduced transmission potential both from and to individuals younger than 20 years of age in the household context, which is more limited when examining all settings. CONCLUSIONS: Our results suggest that exposure in settings with familiar contacts increases SARS-CoV-2 transmission potential. Additionally, the differences observed in transmissibility by index case symptom status and duration of exposure have important implications for control strategies, such as contact tracing, testing, and rapid isolation of cases. There were limited data to explore transmission patterns in workplaces, schools, and care homes, highlighting the need for further research in such settings.
Assuntos
COVID-19 , SARS-CoV-2 , Busca de Comunicante , Características da Família , Humanos , IncidênciaRESUMO
BACKGROUND: Planning for extreme surges in demand for hospital care of patients requiring urgent life-saving treatment for coronavirus disease 2019 (COVID-19), while retaining capacity for other emergency conditions, is one of the most challenging tasks faced by health care providers and policymakers during the pandemic. Health systems must be well-prepared to cope with large and sudden changes in demand by implementing interventions to ensure adequate access to care. We developed the first planning tool for the COVID-19 pandemic to account for how hospital provision interventions (such as cancelling elective surgery, setting up field hospitals, or hiring retired staff) will affect the capacity of hospitals to provide life-saving care. METHODS: We conducted a review of interventions implemented or considered in 12 European countries in March to April 2020, an evaluation of their impact on capacity, and a review of key parameters in the care of COVID-19 patients. This information was used to develop a planner capable of estimating the impact of specific interventions on doctors, nurses, beds, and respiratory support equipment. We applied this to a scenario-based case study of 1 intervention, the set-up of field hospitals in England, under varying levels of COVID-19 patients. RESULTS: The Abdul Latif Jameel Institute for Disease and Emergency Analytics pandemic planner is a hospital planning tool that allows hospital administrators, policymakers, and other decision-makers to calculate the amount of capacity in terms of beds, staff, and crucial medical equipment obtained by implementing the interventions. Flexible assumptions on baseline capacity, the number of hospitalizations, staff-to-beds ratios, and staff absences due to COVID-19 make the planner adaptable to multiple settings. The results of the case study show that while field hospitals alleviate the burden on the number of beds available, this intervention is futile unless the deficit of critical care nurses is addressed first. DISCUSSION: The tool supports decision-makers in delivering a fast and effective response to the pandemic. The unique contribution of the planner is that it allows users to compare the impact of interventions that change some or all inputs.
Assuntos
COVID-19 , Diretrizes para o Planejamento em Saúde , Necessidades e Demandas de Serviços de Saúde , Hospitais , Capacidade de Resposta ante Emergências , Recursos Humanos , Enfermagem de Cuidados Críticos , Inglaterra , Equipamentos e Provisões Hospitalares , Pessoal de Saúde , Número de Leitos em Hospital , HumanosRESUMO
Ebola emerged in West Africa around December 2013 and swept through Guinea, Sierra Leone and Liberia, giving rise to 27,748 confirmed, probable and suspected cases reported by 29 July 2015. Case diagnoses during the epidemic have relied on polymerase chain reaction-based tests. Owing to limited laboratory capacity and local transport infrastructure, the delays from sample collection to test results being available have often been 2 days or more. Point-of-care rapid diagnostic tests offer the potential to substantially reduce these delays. We review Ebola rapid diagnostic tests approved by the World Health Organization and those currently in development. Such rapid diagnostic tests could allow early triaging of patients, thereby reducing the potential for nosocomial transmission. In addition, despite the lower test accuracy, rapid diagnostic test-based diagnosis may be beneficial in some contexts because of the reduced time spent by uninfected individuals in health-care settings where they may be at increased risk of infection; this also frees up hospital beds. We use mathematical modelling to explore the potential benefits of diagnostic testing strategies involving rapid diagnostic tests alone and in combination with polymerase chain reaction testing. Our analysis indicates that the use of rapid diagnostic tests with sensitivity and specificity comparable with those currently under development always enhances control, whether evaluated at a health-care-unit or population level. If such tests had been available throughout the recent epidemic, we estimate, for Sierra Leone, that their use in combination with confirmatory polymerase chain-reaction testing might have reduced the scale of the epidemic by over a third.
Assuntos
Testes Diagnósticos de Rotina , Doença pelo Vírus Ebola , África Ocidental/epidemiologia , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/transmissão , Humanos , Fatores de Tempo , TriagemRESUMO
BACKGROUND: Deaths due to vaccine preventable diseases cause a notable proportion of mortality worldwide. To quantify the importance of vaccination, it is necessary to estimate the burden averted through vaccination. The Vaccine Impact Modelling Consortium (VIMC) was established to estimate the health impact of vaccination. METHODS: We describe the methods implemented by the VIMC to estimate impact by calendar year, birth year and year of vaccination (YoV). The calendar and birth year methods estimate impact in a particular year and over the lifetime of a particular birth cohort, respectively. The YoV method estimates the impact of a particular year's vaccination activities through the use of impact ratios which have no stratification and stratification by activity type and/or birth cohort. Furthermore, we detail an impact extrapolation (IE) method for use between coverage scenarios. We compare the methods, focusing on YoV for hepatitis B, measles and yellow fever. RESULTS: We find that the YoV methods estimate similar impact with routine vaccinations but have greater yearly variation when campaigns occur with the birth cohort stratification. The IE performs well for the YoV methods, providing a time-efficient mechanism for updates to impact estimates. CONCLUSIONS: These methods provide a robust set of approaches to quantify vaccination impact; however it is vital that the area of impact estimation continues to develop in order to capture the full effect of immunisation.
Assuntos
Sarampo , Febre Amarela , Coorte de Nascimento , Humanos , Sarampo/epidemiologia , Sarampo/prevenção & controle , Saúde Pública , VacinaçãoRESUMO
BACKGROUND: In response to the COVID-19 pandemic, governments across the globe have imposed strict social distancing measures. Public compliance to such measures is essential for their success, yet the economic consequences of compliance are unknown. This is the first study to analyze the effects of good compliance compared with poor compliance to a COVID-19 suppression strategy (i.e. lockdown) on work productivity. METHODS: We estimate the differences in work productivity comparing a scenario of good compliance with one of poor compliance to the UK government COVID-19 suppression strategy. We use projections of the impact of the UK suppression strategy on mortality and morbidity from an individual-based epidemiological model combined with an economic model representative of the labour force in Wales and England. RESULTS: We find that productivity effects of good compliance significantly exceed those of poor compliance and increase with the duration of the lockdown. After 3 months of the lockdown, work productivity in good compliance is £398.58 million higher compared with that of poor compliance; 75% of the differences is explained by productivity effects due to morbidity and non-health reasons and 25% attributed to avoided losses due to pre-mature mortality. CONCLUSION: Good compliance to social distancing measures exceeds positive economic effects, in addition to health benefits. This is an important finding for current economic and health policy. It highlights the importance to set clear guidelines for the public, to build trust and support for the rules and if necessary, to enforce good compliance to social distancing measures.