Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Immunol ; 43(2): 271-285, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36251205

RESUMO

Patients with inborn errors of immunity (IEI) in Argentina were encouraged to receive licensed Sputnik, AstraZeneca, Sinopharm, Moderna, and Pfizer vaccines, even though most of the data of humoral and cellular responses combination on available vaccines comes from trials conducted in healthy individuals. We aimed to evaluate the safety and immunogenicity of the different vaccines in IEI patients in Argentina. The study cohort included adults and pediatric IEI patients (n = 118) and age-matched healthy controls (HC) (n = 37). B cell response was evaluated by measuring IgG anti-spike/receptor binding domain (S/RBD) and anti-nucleocapsid(N) antibodies by ELISA. Neutralization antibodies were also assessed with an alpha-S protein-expressing pseudo-virus assay. The T cell response was analyzed by IFN-γ secretion on S- or N-stimulated PBMC by ELISPOT and the frequency of S-specific circulating T follicular-helper cells (TFH) was evaluated by flow cytometry.No moderate/severe vaccine-associated adverse events were observed. Anti-S/RBD titers showed significant differences in both pediatric and adult IEI patients versus the age-matched HC cohort (p < 0.05). Neutralizing antibodies were also significantly lower in the patient cohort than in age-matched HC (p < 0.01). Positive S-specific IFN-γ response was observed in 84.5% of IEI patients and 82.1% presented S-specific TFH cells. Moderna vaccines, which were mainly administered in the pediatric population, elicited a stronger humoral response in IEI patients, both in antibody titer and neutralization capacity, but the cellular immune response was similar between vaccine platforms. No difference in humoral response was observed between vaccinated patients with and without previous SARS-CoV-2 infection.In conclusion, COVID-19 vaccines showed safety in IEI patients and, although immunogenicity was lower than HC, they showed specific anti-S/RBD IgG, neutralizing antibody titers, and T cell-dependent cellular immunity with IFN-γ secreting cells. These findings may guide the recommendation for a vaccination with all the available vaccines in IEI patients to prevent COVID-19 disease.


Assuntos
COVID-19 , Vacinas , Adulto , Humanos , Criança , Vacinas contra COVID-19 , Leucócitos Mononucleares , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Anticorpos Neutralizantes , ELISPOT , Imunoglobulina G , Anticorpos Antivirais , Imunidade Celular
2.
Infect Immun ; 90(6): e0010722, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35612302

RESUMO

The second messenger cyclic di-GMP (c-di-GMP) is a ubiquitous molecule in bacteria that regulates diverse phenotypes. Among them, motility and biofilm formation are the most studied. Furthermore, c-di-GMP has been suggested to regulate virulence factors, making it important for pathogenesis. Previously, we reported that c-di-GMP regulates biofilm formation and swimming motility in Bordetella bronchiseptica. Here, we present a multi-omics approach for the study of B. bronchiseptica strains expressing different cytoplasmic c-di-GMP levels, including transcriptome sequencing (RNA-seq) and shotgun proteomics with label-free quantification. We detected 64 proteins significantly up- or downregulated in either low or high c-di-GMP levels and 358 genes differentially expressed between strains with high c-di-GMP levels and the wild-type strain. Among them, we found genes for stress-related proteins, genes for nitrogen metabolism enzymes, phage-related genes, and virulence factor genes. Interestingly, we observed that a virulence factor like the type III secretion system (TTSS) was regulated by c-di-GMP. B. bronchiseptica with high c-di-GMP levels showed significantly lower levels of TTSS components like Bsp22, BopN, and Bcr4. These findings were confirmed by independent methods, such as quantitative reverse transcription-PCR (q-RT-PCR) and Western blotting. Higher intracellular levels of c-di-GMP correlated with an impaired capacity to induce cytotoxicity in a eukaryotic cell in vitro and with attenuated virulence in a murine model. This work presents data that support the role that the second messenger c-di-GMP plays in the pathogenesis of Bordetella.


Assuntos
Bordetella bronchiseptica , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Bordetella bronchiseptica/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Camundongos , Sistemas de Secreção Tipo III/metabolismo , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
3.
Folia Primatol (Basel) ; 92(4): 227-234, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34515119

RESUMO

The expansion of human populations associated with urbanization results in extensive modification of natural habitats. While many species cannot persist in these highly modified environments, some species adopt new strategies, which contribute to their survival. Several primate species have persisted in altered habitats, including members of the genus Alouatta. To improve our understanding of this interplay, we compared glucocorticoid (GCC) levels in male and female black and gold howler monkeys (Alouatta caraya) in urban and rural areas in northeastern Argentina. Fecal samples (n = 60) were collected from adults and hormone extracts were analyzed by enzyme immunoassays (EIA). Monkeys living in urban areas (females: 109.15 ± 18.83; males: 106.15 ± 10.48) had lower GCClevels than monkeys living in rural areas (females: 152.01 ± 19.50; males:139,82 ± 10.85). Interestingly, males living in urban areas had lower GCC levels compared to those living in rural areas, whereas no differences were observed in GCC levels between females living in urban and rural areas. While these results suggest that urban areas may provide a release from intergroup competition for male howler monkeys, future work is needed to better understand the dynamics of this association to best inform management and conservation of this vulnerable species.


Assuntos
Alouatta caraya , Alouatta , Animais , Argentina , Ecossistema , Meio Ambiente , Feminino , Masculino
4.
J Bacteriol ; 201(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31209073

RESUMO

Bacteria can be motile and planktonic or, alternatively, sessile and participating in the biofilm mode of growth. The transition between these lifestyles can be regulated by a second messenger, cyclic dimeric GMP (c-di-GMP). High intracellular c-di-GMP concentration correlates with biofilm formation and motility inhibition in most bacteria, including Bordetella bronchiseptica, which causes respiratory tract infections in mammals and forms biofilms in infected mice. We previously described the diguanylate cyclase BdcA as involved in c-di-GMP synthesis and motility regulation in B. bronchiseptica; here, we further describe the mechanism whereby BdcA is able to regulate motility and biofilm formation. Amino acid replacement of GGDEF with GGAAF in BdcA is consistent with the conclusion that diguanylate cyclase activity is necessary for biofilm formation and motility regulation, although we were unable to confirm the stability of the mutant protein. In the absence of the bdcA gene, B. bronchiseptica showed enhanced motility, strengthening the hypothesis that BdcA regulates motility in B. bronchiseptica We showed that c-di-GMP-mediated motility inhibition involved regulation of flagellin expression, as high c-di-GMP levels achieved by expressing BdcA significantly reduced the level of flagellin protein. We also demonstrated that protein BB2109 is necessary for BdcA activity, motility inhibition, and biofilm formation. Finally, absence of the bdcA gene affected bacterial infection, implicating BdcA-regulated functions as important for bacterium-host interactions. This work supports the role of c-di-GMP in biofilm formation and motility regulation in B. bronchiseptica, as well as its impact on pathogenesis.IMPORTANCE Pathogenesis of Bordetella spp., like that of a number of other pathogens, involves biofilm formation. Biofilms increase tolerance to biotic and abiotic factors and are proposed as reservoirs of microbes for transmission to other organs (trachea, lungs) or other hosts. Bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) is a second messenger that regulates transition between biofilm and planktonic lifestyles. In Bordetella bronchiseptica, high c-di-GMP levels inhibit motility and favor biofilm formation. In the present work, we characterized a B. bronchiseptica diguanylate cyclase, BdcA, which regulates motility and biofilm formation and affects the ability of B. bronchiseptica to colonize the murine respiratory tract. These results provide us with a better understanding of how B. bronchiseptica can infect a host.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Bordetella/metabolismo , Infecções por Bordetella/microbiologia , Bordetella bronchiseptica/enzimologia , Proteínas de Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Infecções Respiratórias/microbiologia , Animais , Proteínas de Bactérias/genética , Infecções por Bordetella/genética , Bordetella bronchiseptica/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Movimento , Fósforo-Oxigênio Liases/genética
5.
Bioorg Med Chem Lett ; 27(3): 432-436, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28040392

RESUMO

Bordetella bronchiseptica produces respiratory disease primarily in mammals including humans. Although a considerably amount of research has been generated regarding lipopolysaccharide (LPS) role during infection and stimulating innate and adaptive immune response, mechanisms involved in LPS synthesis are still unknown. In this context we searched in B. bronchiseptica genome for putative glycosyltransferases. We found possible genes codifying for enzymes involved in sugar substitution of the LPS structure. We decided to analyse BB3394 to BB3400 genes, closed to a previously described LPS biosynthetic locus in B. pertussis. Particularly, conservation of BB3394 in sequenced B. bronchiseptica genomes suggests the importance of this gene for bacteria normal physiology. Deletion of BB3394 abolished resistance to naive serum as described for other LPS mutants. When purified LPS was analyzed, differences in the LPS core structure were found. Particularly, a GalNA branched sugar substitution in the core was absent in the LPS obtained from BB3394 deletion mutant. Absence of GalNA in core LPS alters immune response in vivo but is able to induce protective response against B. bronchiseptica infection.


Assuntos
Bordetella bronchiseptica/metabolismo , Lipopolissacarídeos/biossíntese , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bordetella bronchiseptica/genética , Bordetella bronchiseptica/imunologia , Genes Bacterianos , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Sistema Imunitário/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/imunologia , Camundongos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
Rev Esp Enferm Dig ; 106(8): 552-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25544415

RESUMO

Liver toxicity associated with herbal remedies and dietary supplements is an increasing concern. Several toxic hepatitis cases have been reported in the literature in association with products intended for weight loss where green tea extracts are an ingredient.Three hepatotoxicity cases are reported below in association with the use of Inneov masa capilar®, a dietary supplement intended to stop hair loss whose primary component is green tea catechins. In all of them, other potential causes of acute hepatitis were ruled out.We highlight the importance of awareness regarding these substances at history taking in order to identify and report hepatic adverse reactions secondary to apparently safe herbs as described in the present manuscript.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/patologia , Suplementos Nutricionais/efeitos adversos , Doenças do Cabelo/complicações , Doenças do Cabelo/prevenção & controle , Preparações de Plantas/efeitos adversos , Chá/efeitos adversos , Feminino , Doenças do Cabelo/patologia , Humanos , Fígado/patologia , Testes de Função Hepática , Pessoa de Meia-Idade
7.
Microbiol Resour Announc ; 13(1): e0099723, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38038469

RESUMO

We present the draft genome sequence of a Mannheimia haemolytica strain isolated from a postmortem lung lesion from a calf diagnosed with bovine respiratory disease. The genome sequence was 2,749,707-bp long with 2,909 putative protein-encoding genes.

8.
Microbiology (Reading) ; 159(Pt 5): 869-879, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23475948

RESUMO

The signalling molecule bis-(3'-5')-cyclic-dimeric guanosine monophosphate (c-di-GMP) is a central regulator of diverse cellular functions, including motility, biofilm formation, cell cycle progression and virulence, in bacteria. Multiple diguanylate cyclase and phosphodiesterase-domain-containing proteins (GGDEF and EAL/HD-GYP, respectively) modulate the levels of the second messenger c-di-GMP to transmit signals and obtain such specific cellular responses. In the genus Bordetella this c-di-GMP network is poorly studied. In this work, we evaluated the expression of two phenotypes in Bordetella bronchiseptica regulated by c-di-GMP, biofilm formation and motility, under the influence of ectopic expression of Pseudomonas aeruginosa proteins with EAL or GGDEF domains that regulates the c-di-GMP level. In agreement with previous reports for other bacteria, we observed that B. bronchiseptica is able to form biofilm and reduce its motility only when GGDEF domain protein is expressed. Moreover we identify a GGDEF domain protein (BB3576) with diguanylate cyclase activity that participates in motility and biofilm regulation in B. bronchiseptica. These results demonstrate for the first time, to our knowledge, the presence of c-di-GMP regulatory signalling in B. bronchiseptica.


Assuntos
Biofilmes , Bordetella bronchiseptica/citologia , Bordetella bronchiseptica/metabolismo , GMP Cíclico/metabolismo , Transdução de Sinais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bordetella bronchiseptica/química , Bordetella bronchiseptica/genética , Regulação Bacteriana da Expressão Gênica , Estrutura Terciária de Proteína
9.
Sci Rep ; 13(1): 7157, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130958

RESUMO

Bordetella bronchiseptica is a gram-negative bacterium that causes respiratory diseases in different animals, including mice, making B. bronchiseptica the gold-standard model to investigate host-pathogen interaction at the molecular level. B. bronchiseptica utilizes many different mechanisms to precisely regulate the expression of virulence factors. Cyclic di-GMP is a second messenger synthesized by diguanylate cyclases and degraded by phosphodiesterases that regulates the expression of multiple virulence factors including biofilm formation. As in other bacteria, we have previously shown that c-di-GMP regulates motility and biofilm formation in B. bronchiseptica. This work describes the diguanylate cyclase BdcB (Bordetella diguanylate cyclase B) as an active diguanylate cyclase that promotes biofilm formation and inhibits motility in B. bronchiseptica. The absence of BdcB increased macrophage cytotoxicity in vitro and induced a greater production of TNF-α, IL-6, and IL-10 by macrophages. Our study reveals that BdcB regulates the expression of components of T3SS, an important virulence factor of B. bronchiseptica. The Bb∆bdcB mutant presented increased expression of T3SS-mediated toxins such as bteA, responsible for cytotoxicity. Our in vivo results revealed that albeit the absence of bdcB did not affect the ability of B. bronchiseptica to infect and colonize the respiratory tract of mice, mice infected with Bb∆bdcB presented a significantly higher pro-inflammatory response than those infected with wild type B. bronchiseptica.


Assuntos
Bordetella bronchiseptica , Sistemas de Secreção Tipo III , Camundongos , Animais , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bordetella bronchiseptica/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , GMP Cíclico/metabolismo , Imunidade , Regulação Bacteriana da Expressão Gênica
10.
mBio ; 13(6): e0273422, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36374078

RESUMO

Bioaugmentation of biological sand filters with Mn(II)-oxidizing bacteria (MOB) is used to increase the efficiency of Mn removal from groundwater. While the biofilm-forming ability of MOB is important to achieve optimal Mn filtration, the regulatory link between biofilm formation and Mn(II) oxidation remains unclear. Here, an environmental isolate of Pseudomonas resinovorans strain MOB-513 was used as a model to investigate the role of c-di-GMP, a second messenger crucially involved in the regulation of biofilm formation by Pseudomonas, in the oxidation of Mn(II). A novel role for c-di-GMP in the upregulation of Mn(II) oxidation through induction of the expression of manganese-oxidizing peroxidase enzymes was revealed. MOB-513 macrocolony biofilms showed a strikingly stratified pattern of biogenic Mn oxide (BMnOx) accumulation in a localized top layer. Remarkably, elevated cellular levels of c-di-GMP correlated not only with increased accumulation of BMnOx in the same top layer but also with the appearance of a second BMnOx stratum in the bottom region of macrocolony biofilms, and the expression of mop genes correlated with this pattern. Proteomic analysis under Mn(II) conditions revealed changes in the abundance of a PilZ domain protein. Subsequent analyses supported a model in which this protein sensed c-di-GMP and affected a regulatory cascade that ultimately inhibited mop gene expression, providing a molecular link between c-di-GMP signaling and Mn(II) oxidation. Finally, we observed that high c-di-GMP levels were correlated with higher lyophilization efficiencies and higher groundwater Mn(II) oxidation capacities of freeze-dried bacterial cells, named lyophiles, showing the biotechnological relevance of understanding the role of c-di-GMP in MOB-513. IMPORTANCE The presence of Mn(II) in groundwater, a common source of drinking water, is a cause of water quality impairment, interfering with its disinfection, causing operation problems, and affecting human health. Purification of groundwater containing Mn(II) plays an important role in environmental and social safety. The typical method for Mn(II) removal is based on bacterial oxidation of metals to form insoluble oxides that can be filtered out of the water. Evidence of reducing the start-up periods and enhancing Mn removal efficiencies through bioaugmentation with appropriate biofilm-forming and MOB has emerged. As preliminary data suggest a link between these two phenotypes in Pseudomonas strains, the need to investigate the underlying regulatory mechanisms is apparent. The significance of our research lies in determining the role of c-di-GMP for increased biofilm formation and Mn(II)-oxidizing capabilities in MOB, which will allow the generation of super-biofilm-elaborating and Mn-oxidizing strains, enabling their implementation in biotechnological applications.


Assuntos
Proteômica , Pseudomonas , Humanos , Pseudomonas/metabolismo , GMP Cíclico/metabolismo , Oxirredução , Biofilmes , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
11.
Front Immunol ; 13: 1020927, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405754

RESUMO

CARD11-associated diseases are monogenic inborn errors of immunity involving immunodeficiency, predisposition to malignancy and immune dysregulation such as lymphoproliferation, inflammation, atopic and autoimmune manifestations. Defects in CARD11 can present as mutations that confer a complete or a partial loss of function (LOF) or contrarily, a gain of function (GOF) of the affected gene product. We report clinical characteristics, immunophenotypes and genotypes of 15 patients from our center presenting with CARD11-associated diseases. Index cases are pediatric patients followed in our immunology division who had access to next generation sequencing studies. Variant significance was defined by functional analysis in cultured cells transfected with a wild type and/or with mutated hCARD11 constructs. Cytoplasmic aggregation of CARD11 products was evaluated by immunofluorescence. Nine index patients with 9 unique heterozygous CARD11 variants were identified. At the time of the identification, 7 variants previously unreported required functional validation. Altogether, four variants showed a GOF effect as well a spontaneous aggregation in the cytoplasm, leading to B cell expansion with NF-κB and T cell anergy (BENTA) diagnosis. Additional four variants showing a LOF activity were considered as causative of CARD11-associated atopy with dominant interference of NF-kB signaling (CADINS). The remaining variant exhibited a neutral functional assay excluding its carrier from further analysis. Family segregation studies expanded to 15 individuals the number of patients presenting CARD11-associated disease. A thorough clinical, immunophenotypical, and therapeutic management evaluation was performed on these patients (5 BENTA and 10 CADINS). A remarkable variability of disease expression was clearly noted among BENTA as well as in CADINS patients, even within multiplex families. Identification of novel CARD11 variants required functional studies to validate their pathogenic activity. In our cohort BENTA phenotype exhibited a more severe and expanded clinical spectrum than previously reported, e.g., severe hematological and extra hematological autoimmunity and 3 fatal outcomes. The growing number of patients with dysmorphic facial features strengthen the inclusion of extra-immune characteristics as part of the CADINS spectrum. CARD11-associated diseases represent a challenging group of disorders from the diagnostic and therapeutic standpoint, especially BENTA cases that can undergo a more severe progression than previously described.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Síndromes de Imunodeficiência , Humanos , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Guanilato Ciclase/metabolismo , Heterozigoto , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/terapia , NF-kappa B/metabolismo
12.
Microbiol Immunol ; 55(12): 847-54, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22039958

RESUMO

The present authors have previously obtained the Bordetella bronchiseptica mutant BbLP39, which contains a deep-rough lipopolysaccharide (LPS) instead the wild type smooth LPS with O antigen. This mutant was found to be altered in the expression of some proteins and in its ability to colonize mouse lungs. Particularly, in BbLP39 the expression of pertactin is decreased. To differentiate the contribution of each bacterial component to the observed phenotype, here mice defective in the LPS sensing receptor TLR4 (TLR4-defective mice) were used. In contrast to wild-type mice, infection of TLR4-defective mice with BbLP39 resulted in lung infection, which persisted for more than 10 days post-challenge. Comparative analysis of the immune responses induced by purified mutant and wild type LPSs showed that the mutant LPS induced significantly higher degrees of expression of TNF-α and IL-10 mRNA than did the wild type. UV matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectrometry analysis revealed that both LPSs had the same penta-acylated lipid A structure. However, the lipid A from BbLP39 contained pyrophosphate instead of phosphate at position 1. This structural difference, in addition to the lack of O-antigen in BbLP39, may explain the functional differences between BbLP39 and wild type strains.


Assuntos
Infecções por Bordetella/imunologia , Bordetella bronchiseptica/química , Bordetella bronchiseptica/imunologia , Lipopolissacarídeos/química , Infecções Respiratórias/imunologia , Animais , Infecções por Bordetella/microbiologia , Bordetella bronchiseptica/genética , Citocinas/genética , Citocinas/metabolismo , Feminino , Lipídeo A/química , Lipídeo A/imunologia , Lipídeo A/isolamento & purificação , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/isolamento & purificação , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Mutação , Antígenos O/imunologia , Infecções Respiratórias/microbiologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
13.
Curr Protoc Microbiol ; 59(1): e125, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33166051

RESUMO

Bordetella bronchiseptica is a gram-negative bacterium that causes respiratory tract infections. It is a natural pathogen of a wide variety of mammals, including some used as laboratory models. This makes B. bronchiseptica an ideal organism to study pathogen-host interactions in order to unveil molecular mechanisms behind pathogenic processes. Even though genetic engineering is an essential tool in this area, there are just a few reports about genome manipulation techniques in this organism. In this article we describe an allelic exchange protocol based on double crossover recombination facilitated by the Bacillus subtilis sacB gene that can be applied for partial or complete gene knockouts, single-nucleotide mutations, or even introduction of coding sequences for transcriptional fusions. In contrast to previously employed techniques, this protocol renders genetically manipulated chromosomes without foreign DNA and enables the construction of successive genome manipulation using the same vector backbone. The entire procedure has been developed for fast and reliable manipulations with a total duration of 2 weeks. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Setting up strains Basic Protocol 2: Homologous recombination (first crossing-over) Alternate Protocol: B. bronchiseptica electroporation Basic Protocol 3: Screening for sucrose-sensitive clones Basic Protocol 4: Homologous recombination (second crossing-over) Basic Protocol 5: PCR screening of putative marker-exchange mutants Support Protocol: Electrocompetent cell preparation.


Assuntos
Bacillus subtilis/genética , Bordetella bronchiseptica/genética , Genes Bacterianos/genética , Engenharia Genética/métodos , Hexosiltransferases/genética , Técnicas Bacteriológicas/métodos , Técnicas de Inativação de Genes , Recombinação Homóloga , Reação em Cadeia da Polimerase
14.
J Am Soc Mass Spectrom ; 30(9): 1679-1689, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31190311

RESUMO

Bordetella bronchiseptica, known to infect animals and rarely humans, expresses a lipopolysaccharide that plays an essential role in host interactions, being critical for early clearance of the bacteria. On a B. bronchiseptica 9.73 isolate, mutants defective in the expression of genes involved in the biosynthesis of the core region were previously constructed. Herein, a comparative detailed structural analysis of the expressed lipids A by MALDI-TOF mass spectrometry was performed. The Bb3394 LPS defective in a 2-amino-2-deoxy-D-galacturonic acid lateral residue of the core presented a penta-acylated diglucosamine backbone modified with two glucosamine phosphates, similar to the wild-type lipid A. In contrast, BbLP39, resulting in the interruption of the LPS core oligosaccharide synthesis, presented lipid A species consisting in a diglucosamine backbone N-substituted with C14:0(3-O-C12:0) in C-2 and C14:0(3-O-C14:0) in C-2', O-acylated with C14:0(3-O-C10:0(3-OH) in C-3' and with a pyrophosphate in C-1. Regarding Bb3398 also presenting a rough LPS, the lipid A is formed by a hexa-acylated diglucosamine backbone carrying one pyrophosphate group in C-1 and one phosphate in C-4', both substituted with ethanolamine groups. As far as we know, this is the first description of a phosphoethanolamine modification in B. bronchiseptica lipid A. Our results demonstrate that although gene deletions were not directed to the lipid A moiety, each mutant presented different modifications. MALDI-TOF mass spectrometry was an excellent tool to highlight the structural diversity of the lipid A structures biosynthesized during its transit through the periplasm to the final localization in the outer surface of the outer membrane. Graphical Abstract.


Assuntos
Bordetella bronchiseptica/genética , Glicosiltransferases/genética , Lipídeo A/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bordetella bronchiseptica/química , Bordetella bronchiseptica/metabolismo , Difosfatos/química , Glucosamina/química , Glicosiltransferases/química , Lipídeo A/análise , Lipídeo A/genética , Mutação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
15.
mBio ; 10(3)2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31088927

RESUMO

Bordetella bronchiseptica encodes and expresses a flagellar apparatus. In contrast, Bordetella pertussis, the causative agent of whooping cough, has historically been described as a nonmotile and nonflagellated organism. The previous statements that B. pertussis was a nonmotile organism were consistent with a stop codon located in the flagellar biosynthesis gene, flhA, discovered when the B. pertussis Tohama I genome was sequenced and analyzed by Parkhill et al. in 2003 (J. Parkhill, M. Sebaihia, A. Preston, L. D. Murphy, et al., Nat Genet, 35:32-40, 2003, https://doi.org/10.1038/ng1227). The stop codon has subsequently been found in all annotated genomes. Parkhill et al. also showed, however, that B. pertussis contains all genetic material required for flagellar synthesis and function. We and others have determined by various transcriptomic analyses that these flagellar genes are differentially regulated under a variety of B. pertussis growth conditions. In light of these data, we tested for B. pertussis motility and found that both laboratory-adapted strains and clinical isolates can be motile. Upon isolation of motile B. pertussis, we discovered flagellum-like structures on the surface of the bacteria. B. pertussis motility appears to occur primarily in the Bvg(-) phase, consistent with regulation present in B. bronchiseptica Motility can also be induced by the presence of fetal bovine serum. These observations demonstrate that B. pertussis can express flagellum-like structures, and although it remains to be determined if B. pertussis expresses flagella during infection or if motility and/or flagella play roles during the cycle of infection and transmission, it is clear that these data warrant further investigation.IMPORTANCE This report provides evidence for motility and expression of flagella by B. pertussis, a bacterium that has been reported as nonmotile since it was first isolated and studied. As with B. bronchiseptica, B. pertussis cells can express and assemble a flagellum-like structure on their surface, which in other organisms has been implicated in several important processes that occur in vivo The discovery that B. pertussis is motile raises many questions, including those regarding the mechanisms of regulation for flagellar gene and protein expression and, importantly, the role of flagella during infection. This novel observation provides a foundation for further study of Bordetella flagella and motility in the contexts of infection and transmission.


Assuntos
Bordetella pertussis/fisiologia , Flagelos/fisiologia , Regulação Bacteriana da Expressão Gênica , Bordetella bronchiseptica/genética , Bordetella pertussis/genética , Flagelina/genética , Flagelina/isolamento & purificação , Movimento
16.
PLoS One ; 11(7): e0158752, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27380521

RESUMO

Biofilm formation is important for infection by many pathogens. Bordetella bronchiseptica causes respiratory tract infections in mammals and forms biofilm structures in nasal epithelium of infected mice. We previously demonstrated that cyclic di-GMP is involved in biofilm formation in B. bronchiseptica. In the present work, based on their previously reported function in Pseudomonas fluorescens, we identified three genes in the B. bronchiseptica genome likely involved in c-di-GMP-dependent biofilm formation: brtA, lapD and lapG. Genetic analysis confirmed a role for BrtA, LapD and LapG in biofilm formation using microtiter plate assays, as well as scanning electron and fluorescent microscopy to analyze the phenotypes of mutants lacking these proteins. In vitro and in vivo studies showed that the protease LapG of B. bronchiseptica cleaves the N-terminal domain of BrtA, as well as the LapA protein of P. fluorescens, indicating functional conservation between these species. Furthermore, while BrtA and LapG appear to have little or no impact on colonization in a mouse model of infection, a B. bronchiseptica strain lacking the LapG protease has a significantly higher rate of inducing a severe disease outcome compared to the wild type. These findings support a role for c-di-GMP acting through BrtA/LapD/LapG to modulate biofilm formation, as well as impact pathogenesis, by B. bronchiseptica.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Infecções por Bordetella/microbiologia , Bordetella bronchiseptica/fisiologia , GMP Cíclico/análogos & derivados , Animais , Proteínas de Bactérias/genética , Western Blotting , Bordetella bronchiseptica/genética , Bordetella bronchiseptica/metabolismo , GMP Cíclico/metabolismo , Feminino , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interações Hospedeiro-Patógeno , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Mutação , Pseudomonas fluorescens/genética , Infecções Respiratórias/microbiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética
17.
Res Microbiol ; 156(8): 843-50, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16002267

RESUMO

Bordetella bronchiseptica infection requires the activation of virulence genes by the two-component BvgAS regulatory system, which also activates bvgR, a repressor of another set of genes called avirulence genes. Whether or not BvgR-repressed genes play a role in pathogenesis is poorly understood. To evaluate their possible contribution to the bacteria-host interaction we constructed a B. bronchiseptica bvgR insertional mutant (BbBvgR mutant). As expected, this mutant simultaneously expressed virulence and avirulence markers. In vitro experiments demonstrated that, although the BbBvgR mutant expressed avirulence factors during its virulent state, the bacteria adhered to and survived within human epithelial cells as efficiently as the wild-type strain. The mutant was not impaired for colonization of the respiratory tract in vivo, as it was effectively cleared from lungs during the same time period as the wild-type strain.


Assuntos
Proteínas de Bactérias/metabolismo , Bordetella bronchiseptica/fisiologia , Regulação Bacteriana da Expressão Gênica , Animais , Proteínas de Bactérias/genética , Bordetella bronchiseptica/patogenicidade , Linhagem Celular , Humanos , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais
18.
Clin Vaccine Immunol ; 14(11): 1490-8, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17699837

RESUMO

To add new insight to our previous work on the molecular epidemiology of Bordetella pertussis in Argentina, the prn and ptxS1 gene sequences and pulsed-field gel electrophoresis (PFGE) profiles of 57 clinical isolates obtained during two periods, 1969 to 1989 and 1997 to 2006, were analyzed. Non-vaccine-type ptxS1A was detected in isolates obtained since 1969. From 1989 on, a shift of predominance from the vaccine prn1 type to the nonvaccine prn2 type was observed. This was also reflected in a transition of PFGE group IV to group VI. These results show that nonvaccine B. pertussis strains are currently circulating. To analyze whether the observed genomic divergences between vaccine strains and clinical isolates have functional implications, protection assays using the intranasal mouse challenge model were performed. For such experiments, the clinical isolate B. pertussis 106 was selected as representative of circulating bacteria, since it came from the major group of the PFGE dendrogram (PFGE group VI). Groups of mice were immunized either with diphtheria-tetanus-whole-cell pertussis vaccine (ptxS1B prn1) or a vaccine prepared by us containing B. pertussis 106. Immunized mice were then challenged with a B. pertussis vaccine strain (Tohama, harboring ptxS1B and prn1) or the clinical isolate B. pertussis 106 (ptxS1A prn2). An adequate bacterial-elimination rate was observed only when mice were immunized and challenged with the same kind of strain. For further characterization, comparative proteomic profiling of enriched membrane proteins was done using three vaccine strains and the selected B. pertussis 106 clinical isolate. By matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis, a total of 54 proteins were identified. This methodology allowed us to detect differing proteins among the four strains studied and, in particular, to distinguish the three vaccine strains from each other, as well as the vaccine strains from the clinical isolate. The differing proteins observed have cellular roles associated with amino acid and carbohydrate transport and metabolism. Some of them have been proposed as novel vaccine candidate proteins for other pathogens. Overall, the global strategy described here is presented as a good tool for the development of next-generation acellular vaccines.


Assuntos
Proteínas da Membrana Bacteriana Externa/análise , Proteínas de Bactérias/análise , Bordetella pertussis/química , Bordetella pertussis/genética , Toxina Pertussis/análise , Vacina contra Coqueluche , Fatores de Virulência de Bordetella/análise , Animais , Antígenos de Bactérias/imunologia , Argentina , Proteínas da Membrana Bacteriana Externa/genética , Bordetella pertussis/classificação , Bordetella pertussis/imunologia , Bordetella pertussis/isolamento & purificação , Contagem de Colônia Microbiana , Eletroforese em Gel de Campo Pulsado , Feminino , Genótipo , Humanos , Esquemas de Imunização , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Toxina Pertussis/genética , Vacina contra Coqueluche/imunologia , Polimorfismo Genético , Proteômica , Fatores de Virulência de Bordetella/genética , Coqueluche/imunologia , Coqueluche/prevenção & controle
19.
Infect Immun ; 70(4): 1791-8, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11895940

RESUMO

Bordetella bronchiseptica is closely related to Bordetella pertussis, which produces respiratory disease primarily in mammals other than humans. However, its importance as a human pathogen is being increasingly recognized. Although a large amount of research on Bordetella has been generated regarding protein virulence factors, the participation of the surface lipopolysaccharide (LPS) during B. bronchiseptica infection is less understood. To get a better insight into this matter, we constructed and characterized the behavior of an LPS mutant with the deepest possible rough phenotype. We generated the defective mutant B. bronchiseptica LP39 on the waaC gene, which codes for a heptosyl transferase involved in the biosynthesis of the core region of the LPS molecule. Although in B. bronchiseptica LP39 the production of the principal virulence determinants adenylate cyclase-hemolysin, filamentous hemagglutinin, and pertactin persisted, the quantity of the two latter factors was diminished, with the levels of pertactin being the most greatly affected. Furthermore, the LPS of B. bronchiseptica LP39 did not react with sera obtained from mice that had been infected with the parental strain, indicating that this defective LPS is immunologically different from the wild-type LPS. In vivo experiments demonstrated that the ability to colonize the respiratory tract is reduced in the mutant, being effectively cleared from lungs within 5 days, whereas the parental strain survived at least for 30 days. In vitro experiments have demonstrated that, although B. bronchiseptica LP39 was impaired for adhesion to human epithelial cells, it is still able to survive within the host cells as efficiently as the parental strain. These results seem to indicate that the deep rough form of B. bronchiseptica LPS cannot represent a dominant phenotype at the first stage of colonization. Since isolates with deep rough LPS phenotype have already been obtained from human B. bronchiseptica chronic infections, the possibility that this phenotype arises as a consequence of selection pressure within the host at a late stage of the infection process is discussed.


Assuntos
Bordetella bronchiseptica/patogenicidade , Lipopolissacarídeos/química , Animais , Southern Blotting , Bordetella bronchiseptica/química , Bordetella bronchiseptica/genética , Feminino , Glicosiltransferases/genética , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA