Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Biomacromolecules ; 24(11): 5183-5193, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37906697

RESUMO

Chitosan (CS)-based scaffolds loaded with Pinus radiata extract bark (PE) and grape seed extract (GSE) were successfully developed for wound dressing applications. The effects of incorporating GSE and PE in CS scaffolds were investigated in relation to their physicochemical and biological properties. All scaffolds exhibited porous structures with the ability to absorb more than 70 times their weight when contacted with blood and phosphate buffer solution. The incorporation of GSE and PE into the CS scaffolds increased their blood absorption ability and degradation rates over time. All scaffolds showed a clotting ability above 95%, with their surfaces being favorable for red blood cell attachment. Both GSE and PE were released from the CS scaffolds in a sustained manner. Scaffolds loaded with GSE and PE inhibited the bacterial activity of S. aureus and E. coli by 40% and 44% after 24 h testing. In vitro cell viability studies demonstrated that all scaffolds were nontoxic to HaCaT cells. Importantly, the addition of GSE and PE further increased cell viability compared to that of the CS scaffold. This study provides a new synthesis method to immobilize GSE and PE on CS scaffolds, enabling the formation of novel material platforms with a high potential for wound dressing applications.


Assuntos
Quitosana , Quitosana/química , Staphylococcus aureus , Escherichia coli , Alicerces Teciduais/química , Bandagens , Antibacterianos/farmacologia , Antibacterianos/química
2.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834146

RESUMO

The aquaculture industry is constantly increasing its fish production to provide enough products to maintain fish consumption worldwide. However, the increased production generates susceptibility to infectious diseases that cause losses of millions of dollars to the industry. Conventional treatments are based on antibiotics and antivirals to reduce the incidence of pathogens, but they have disadvantages, such as antibiotic resistance generation, antibiotic residues in fish, and environmental damage. Instead, functional foods with active compounds, especially antimicrobial peptides that allow the generation of prophylaxis against infections, provide an interesting alternative, but protection against gastric degradation is challenging. In this study, we evaluated a new immunomodulatory recombinant peptide, CATH-FLA, which is encapsulated in chitosan microparticles to avoid gastric degradation. The microparticles were prepared using a spray drying method. The peptide release from the microparticles was evaluated at gastric and intestinal pH, both in vitro and in vivo. Finally, the biological activity of the formulation was evaluated by measuring the expression of il-1ß, il-8, ifn-γ, Ifn-α, and mx1 in the head kidney and intestinal tissues of rainbow trout (Oncorhynchus mykiss). The results showed that the chitosan microparticles protect the CATH-FLA recombinant peptide from gastric degradation, allowing its release in the intestinal portion of rainbow trout. The microparticle-protected CATH-FLA recombinant peptide increased the expression of il-1ß, il-8, ifn-γ, ifn-α, and mx1 in the head kidney and intestine and improved the antiprotease activity in rainbow trout. These results suggest that the chitosan microparticle/CATH-FLA recombinant peptide could be a potential prophylactic alternative to conventional antibiotics for the treatment of infectious diseases in aquaculture.


Assuntos
Quitosana , Doenças Transmissíveis , Doenças dos Peixes , Oncorhynchus mykiss , Animais , Quitosana/farmacologia , Interleucina-8 , Imunidade Inata , Peptídeos/farmacologia , Intestinos , Antibacterianos , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/prevenção & controle
3.
AAPS PharmSciTech ; 18(7): 2691-2701, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28283930

RESUMO

Proanthocyanidins (PAs) have several bioactivities, but they are unstable in the digestive tract and possess low bioavailability. Nanoencapsulation stabilizes these compounds for oral administration. The intestinal absorption of grape seed and skin extracts, and the poly-lactic acid (PLA) nanoparticles loaded with such extracts was modeled, taking into consideration physicochemical process parameters, evaluating the PAs concentration profile in the human small intestine. Density (ρ), solubility, viscosity (µ), diffusion coefficient (D), and the global mass transfer coefficient (K) for both substrates were estimated, simulating their passing from the intestine into the blood at 37°C. For the seed and skin extracts encapsulated in PLA the physicochemical parameters were: D = 1.81 × 10^-5 and D = 5.72 × 10^-5 cm2/s; K = 3.4 × 10^-3 and K = 2.47 × 10^-4 cm/s, respectively. Lower resistance was offered by the seed extract than by skin extracts (nanoencapsulated), which was explained by differences in structural composition, and average molecular weight of the two kinds of extracts, which should be more favorable to the mass transfer in comparison to the raw extracts. The concentration profile of grape extracts in the small intestine was modeled through a pure convection model, and the encapsulated extract on PLA nanoparticles using a mixed regime model, which described the process of dissolution and absorption of the grape extracts from the intestine to the blood stream. The absorbed fraction predicted by the model was 42.7 and 24.2% for seed and skin extracts, respectively. Those values increased to 100% for both extracts after the simulation with the nanoencapsulated extracts. Consequently, extract encapsulation should produce a significant increase in intestinal absorption.


Assuntos
Extrato de Sementes de Uva/farmacocinética , Absorção Intestinal , Extratos Vegetais/farmacocinética , Proantocianidinas/farmacocinética , Humanos , Modelos Teóricos , Nanopartículas/química , Poliésteres/química , Proantocianidinas/administração & dosagem
4.
AAPS PharmSciTech ; 15(1): 103-10, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24158737

RESUMO

The concentration profiles and the absorbed fraction (F) of the País grape seed extract in the human small intestine were obtained using a microscopic model simulation that accounts for the extracts' dissolution and absorption. To apply this model, the physical and chemical parameters of the grape seed extract solubility (C s), density (ρ), global mass transfer coefficient between the intestinal and blood content (k) (effective permeability), and diffusion coefficient (D) were experimentally evaluated. The diffusion coefficient (D = 3.45 × 10(-6) ± 5 × 10(-8) cm(2)/s) was approximately on the same order of magnitude as the coefficients of the relevant constituents. These results were chemically validated to discover that only the compounds with low molecular weights diffused across the membrane (mainly the (+)-catechin and (-)-epicatechin compounds). The model demonstrated that for the País grape seed extract, the dissolution process would proceed at a faster rate than the convective process. In addition, the absorbed fraction was elevated (F = 85.3%). The global mass transfer coefficient (k = 1.53 × 10(-4) ± 5 × 10(-6) cm/s) was a critical parameter in the absorption process, and minor changes drastically modified the prediction of the extract absorption. The simulation and experimental results show that the grape seed extract possesses the qualities of a potential phytodrug.


Assuntos
Extrato de Sementes de Uva/metabolismo , Absorção Intestinal/fisiologia , Intestino Delgado/metabolismo , Humanos , Permeabilidade , Solubilidade
5.
Polymers (Basel) ; 16(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675000

RESUMO

Hydrogels are three-dimensional crosslinked materials known for their ability to absorb water, exhibit high flexibility, their biodegradability and biocompatibility, and their ability to mimic properties of different tissues in the body. However, their application is limited by inherent deficiencies in their mechanical properties. To address this issue, reduced graphene oxide (rGO) and tannins (TA) were incorporated into alginate hydrogels (Alg) to evaluate the impact of the concentration of these nanomaterials on mechanical and adhesive, as well as cytotoxicity and wound-healing properties. Tensile mechanical tests demonstrated improvements in tensile strength, elastic modulus, and toughness upon the incorporation of rGO and TA. Additionally, the inclusion of these materials allowed for a greater energy dissipation during continuous charge-discharge cycles. However, the samples did not exhibit self-recovery under environmental conditions. Adhesion was evaluated on pig skin, revealing that higher concentrations of rGO led to enhanced adhesion, while the concentration of TA did not significantly affect this property. Moreover, adhesion remained consistent after 10 adhesion cycles, and the contact time before the separation between the material and the surface did not affect this property. The materials were not cytotoxic and promoted healing in human fibroblast-model cells. Thus, an Alg/rGO/TA hydrogel with enhanced mechanical, adhesive, and wound-healing properties was successfully developed.

6.
Polymers (Basel) ; 15(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37376399

RESUMO

In this study, a conductive composite material, based on graphene oxide (GO), nanocellulose (CNF), and tannins (TA) from pine bark, reduced using polydopamine (PDA), was developed for wound dressing. The amount of CNF and TA was varied in the composite material, and a complete characterization including SEM, FTIR, XRD, XPS, and TGA was performed. Additionally, the conductivity, mechanical properties, cytotoxicity, and in vitro wound healing of the materials were evaluated. A successful physical interaction between CNF, TA, and GO was achieved. Increasing CNF amount in the composite reduced the thermal properties, surface charge, and conductivity, but its strength, cytotoxicity, and wound healing performance were improved. The TA incorporation slightly reduced the cell viability and migration, which may be associated with the doses used and the extract's chemical composition. However, the in-vitro-obtained results demonstrated that these composite materials can be suitable for wound healing.

7.
Pharmaceutics ; 14(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36145521

RESUMO

Using in vitro and in vivo models, this study investigated the hemostatic potential to control bleeding of both unloaded gelatin-graphene oxide aerogels and the same loaded with proanthocyanidins (PAs) from Vitis vinifera grape skin extract. Our results showed that the physicochemical and mechanical properties of the aerogels were not affected by PA inclusion. In vitro studies showed that PA-loaded aerogels increased the surface charge, blood absorption capacity and cell viability compared to unloaded ones. These results are relevant for hemostasis, since a greater accumulation of blood cells on the aerogel surface favors aerogel-blood cell interactions. Although PAs alone were not able to promote hemostasis through extrinsic and intrinsic pathways, their incorporation into aerogels did not affect the in vitro hemostatic activity of these composites. In vivo studies demonstrated that both aerogels had significantly increased hemostatic performance compared to SpongostanTM and gauze sponge, and no noticeable effects of PA alone on the in vivo hemostatic performance of aerogels were observed; this may have been related to its poor diffusion from the aerogel matrix. Thus, PAs have a positive effect on hemostasis when incorporated into aerogels, although further studies should be conducted to elucidate the role of this extract in the different stages of hemostasis.

8.
Polymers (Basel) ; 14(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35745907

RESUMO

In this study, poly(ε-caprolactone) (PCL)/gelatin (GEL) electrospun nanofibers loaded with two different concentrations of Pinus radiata bark extracts (PEs) were fabricated via electrospinning for wound healing applications. The effects of incorporating PE into PCL/GEL electrospun nanofibers were investigated regarding their physicochemical properties and in vitro biocompatibility. All electrospun nanofibers showed smooth, uniform, and bead-free surfaces. Their functional groups were detected by ATR-FTIR spectroscopy, and their total phenol content was measured by a Folin-Ciocalteu assay. With PE addition, the electrospun nanofibers exhibited an increase in their wettability and degradation rates over time and a decrease in their tensile stress values from 20 ± 4 to 8 ± 2 MPa for PCL/GEL and PCL/GEL/0.36%PE samples, respectively. PE was also released from the fibrous mats in a rather controlled fashion. The PCL/GEL/0.18%PE and PCL/GEL/0.36%PE electrospun nanofibers inhibited bacterial activity at around 6 ± 0.1% and 23 ± 0.3% against E. coli and 14 ± 0.1% and 18 ± 0.2% against S. aureus after 24 h incubation, respectively. In vitro cell studies showed that PE-loaded electrospun nanofibers enhanced HaCaT cell growth, attachment, and proliferation, favoring cell migration towards the scratch area in the wound healing assay and allowing a complete wound closure after 72 h treatment. These findings suggested that PE-loaded electrospun nanofibers are promising materials for antibiotic-free dressings for wound healing applications.

9.
Biomater Adv ; 139: 213007, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35891602

RESUMO

In this study, graphene oxide (GO)-based aerogels cross-linked with chitosan (CS), gelatin (GEL), and polyvinyl alcohol (PVA) were characterized and their hemostatic efficiencies both in vitro and in vivo were investigated and compared to commercial materials (ChitoGauze®XR and Spongostan™). All aerogels exhibited highly porous structures and a negative surface charge density favorable to their interaction with blood cells. The in vitro studies showed that all aerogels coagulated >60 % of the blood contained in their structures after 240 s of the whole-blood clotting assay, the GO-CS aerogel being the one with the highest blood clotting. All aerogels showed high hemocompatibility, with hemolytic rates <5 %, indicating their use as biomaterials. Among them, the GO-GEL aerogel exhibited the lowest hemolytic activity, due possibly to its high GEL content compared to the GO amount. According to their blood clotting activity, aerogels did not promote coagulation through extrinsic and intrinsic pathways. However, their surfaces are suitable for accelerating hemostasis by promoting alternative routes. All aerogels adhered platelets and gathered RBCs on their surfaces, and in addition the GO-CS aerogel surface also promoted the formation of filamentous fibrin networks adhered on its structure. Furthermore, in vivo evaluations revealed that all aerogels significantly shortened the hemostatic times and reduced the blood loss amounts compared both to the Spongostan™ and ChitoGauze®XR commercial materials and to the gauze sponge (control group). The hemostatic performance in vitro and in vivo of these aerogels suggests that they could be used as hemostats for controlling profuse bleedings.


Assuntos
Quitosana , Grafite , Hemostáticos , Quitosana/química , Gelatina/farmacologia , Grafite/farmacologia , Hemorragia , Hemostáticos/farmacologia , Humanos , Polímeros
10.
Biomater Adv ; 143: 213167, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36356469

RESUMO

Effective cytokine treatments often require high- and multiple-dose due to the short half-life of these molecules. Here, porcine interferon-alpha (IFNα) is encapsulated in PLGA-chitosan microparticles (IFNα-MPs) to accomplish both slow drug release and drug protection from degradation. A procedure that combines emulsion and spray-drying techniques yielded almost spherical microspheres with an average diameter of 3.00 ± 1.50 µm. SEM, Microtrac, and Z-potential analyses of three IFNα-MP batches showed similar results, indicating the process is reproducible. These studies supported molecular evidence obtained in FTIR analysis, which indicated a compact structure of IFNα-MPs. Consistently, IFNα release kinetics assessed in vitro followed a zero-order behavior typical of sustained release from a polymeric matrix. This study showed that IFNα-MPs released bioactive molecules for at least 15 days, achieving IFNα protection. In addition, pigs treated with IFNα-MPs exhibited overexpression of IFNα-stimulated genes 16 days after treatment. Instead, the expression levels of these genes decreased after day 4th in pigs treated with non-encapsulated IFNα. In vitro and in vivo experiments demonstrated that the formulation improved the prophylactic and therapeutic potential of IFNα, accomplishing molecule protection and long-term release for at least two weeks. The procedure used to obtain IFNα-MPs is reproducible, scalable, and suitable for encapsulating other drugs.


Assuntos
Quitosana , Suínos , Animais , Interferon-alfa , Tamanho da Partícula , Microesferas , Composição de Medicamentos/métodos
11.
Colloids Surf B Biointerfaces ; 206: 111941, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34216847

RESUMO

Aerogels based on gelatin and graphene oxide (GO) were synthesized by microwave-assisted reactions, incorporating grape skin extracts -high in proanthocyanidins (PAs)- to develop a hemostatic device with improved properties. The effects of incorporating PAs into the aerogels were investigated in relation to their physicochemical properties, absorption ability, clotting activity and cytotoxicity in human dermal fibroblast (HDF) cells. The aerogels presented highly resistant porous structures, capable of absorbing more than 50 times their weight when in contact with a phosphate saline solution (PBS) and fresh human blood. Interestingly, the addition of PAs increased the negative surface charges and the blood absorption ability of the aerogels, which may make them suitable for hemostasis. The incorporation of 5% and 10% (w/w) of extracts into the aerogels increased the total coagulated blood content by 36.6% and 24.5% compared with gelatin-GO aerogel, respectively. These improvements in the hemostatic properties of the aerogels were greater with the inclusion of 5% (w/w) of grape skin extracts into the aerogels. The aerogels were also able to adhere red blood cells onto their surfaces, which could favor the formation of stable fibrin networks to promote hemostasis. Their clotting activity suggested the activation of alternative routes based on complement coagulation systems. Finally, the aerogels were non-toxic for HDF cells and the PAs were successfully released from their matrices. Thus, gelatin-GO aerogels reinforced with PAs are promising as topical phytodrug delivery systems, with great potential for wound healing processes.


Assuntos
Grafite , Proantocianidinas , Bandagens , Gelatina , Humanos , Proantocianidinas/farmacologia
12.
Colloids Surf B Biointerfaces ; 197: 111398, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33035809

RESUMO

The natural mechanisms of the body cannot control massive hemorrhaging, resulting in a requirement for hemostatic intervention. In this study, Graphene oxide and Chitosan aerogels reinforced with grape seed (SD) and skin (SK) extracts were developed for use as hemostatic agents by evaluating the influence of pH on their synthesis, and the amount of grape extract added on the physical and chemical properties of the aerogels. The material was evaluated by FTIR, XRD, Raman spectroscopy, DLS, uniaxial compression tests and SEM. The capacity of the aerogels to absorb water, PBS and blood, as well as their coagulation capacity, were determined. In addition, the release profile for grape extracts in PBS and the material's cytotoxicity were determined. The aerogels that were synthesized under basic conditions and loaded with grape extracts were more rigid and negatively charged, and they presented smaller pores than the un-loaded acidic aerogels. For all aerogels, the hemoglobin absorption was greater than 90 % in the first 30 s. A higher density of adsorbed blood cells was observed on aerogels loaded with a higher amount of grape extract. The maximum release of extract from the aerogels occurred for those loaded with SK extracts at a basic pH; the aerogels that were prepared under acidic conditions dissolved in the media. Aerogels loaded with SK extracts under alkaline conditions were not cytotoxic toward human dermal fibroblasts and exhibited cell viabilities above 90 %. These findings suggest that these aerogels have the potential for use as hemostatic agents in wound management.


Assuntos
Quitosana , Grafite , Hemostáticos , Hemostáticos/farmacologia , Humanos , Água
13.
Int J Nanomedicine ; 15: 1229-1238, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32110019

RESUMO

INTRODUCTION: In the last years, the utilization of phytomedicines has increased given their good therapeutic activity and fewer side effects compared to allopathic medicines. However, concerns associated with the biocompatibility and toxicity of natural compounds, limit the phytochemical therapeutic action, opening the opportunity to develop new systems that will be able to effectively deliver these substances. This study has developed a nanocomposite of chitosan (CS) functionalized with graphene oxide (GO) for the delivery of proanthocyanidins (PAs), obtained from a grape seed extract (Ext.). METHODS: The GO-CS nanocomposite was covalently bonded and was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), atomic force microscopy (AFM) and by dynamic light scattering (DLS). The loading and release of Ext. from the GO-CS nanocomposite were performed in simulated physiological, and the cytotoxicity of the raw materials (GO and Ext.) and nanocomposites (GO-CS and GO-CS-Ext.) was determined using a human kidney cell line (HEK 293). RESULTS: The chemical characterization indicated that the covalent union was successfully achieved between the GO and CS, with 44 wt. % CS in the nanocomposite. The GO-CS nanocomposite was thermostable and presented an average diameter of 480 nm (by DLS). The Ext. loading capacity was approximately 20 wt. %, and under simulated physiological conditions, 28.4 wt.% Ext. (g) was released per g of the nanocomposite. GO-CS-Ext. was noncytotoxic, presenting a 97% survival rate compared with 11% for the raw extract and 48% for the GO-CS nanocomposite at a concentration of 500 µg mL-1 after 24 hrs. CONCLUSION: Due to π-π stacking and hydrophilic interactions, GO-CS was reasonably efficient in binding Ext., with high loading capacity and Ext. release from the nanocomposite. The GO-CS nanocomposite also increased the biocompatibility of PAs-rich Ext., representing a new platform for the sustained release of phytodrugs.


Assuntos
Nanocompostos/administração & dosagem , Nanocompostos/química , Proantocianidinas/administração & dosagem , Quitosana/química , Sistemas de Liberação de Medicamentos/métodos , Extrato de Sementes de Uva/administração & dosagem , Extrato de Sementes de Uva/química , Extrato de Sementes de Uva/isolamento & purificação , Grafite/química , Células HEK293 , Humanos , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Proantocianidinas/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Mater Sci Eng C Mater Biol Appl ; 116: 111260, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32806331

RESUMO

Polymeric nanoparticulate systems allow the encapsulation of bio-active substances, giving them protection against external agents and increasing the drug's bioavailability. The use of biocompatible and biodegradable polymers usually guarantees the harmless character of the formulation, and a controlled drug release is also assured. A relatively easy procedure to obtain polymeric formulations of bioactive agents is ionotropic gelation, which allows the synthesis of chitosan (CS) - sodium tri-polyphosphate nanoparticles (NPs) loading encapsulated proteins. In this work, Bovine serum albumin (BSA) model protein and a recombinant porcine alpha interferon variant were used to obtain nanoparticulate formulations. The internalization of the encapsulated material by cells was studied using a BSA-fluorescein system; the fluorescent conjugate was observable inside the cells after 20 h of incubation. The therapeutic CS-alpha interferon formulation showed a maximum of protein released in vitro at around 90 h. This system was found to be safe in a cytotoxicity assay, while biological activity experiments in vitro showed antiviral protection of cells in the presence of encapsulated porcine alpha interferon. In vivo experiments in pigs revealed a significant and sustained antiviral response through overexpression of the antiviral markers OAS2 and PKR. This proves the preservation of porcine alpha interferon biological activity, and also that a lasting response was obtained. This procedure is an effective and safe method to formulate drugs in nanoparticulate systems, representing a significant contribution to the search for more effective drug delivery strategies.


Assuntos
Quitosana , Nanopartículas , Preparações Farmacêuticas , Animais , Antivirais/farmacologia , Disponibilidade Biológica , Bovinos , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Interferon-alfa , Tamanho da Partícula , Polímeros , Suínos
15.
Poult Sci ; 98(12): 6636-6643, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31529087

RESUMO

The efficient treatment or appropriate final disposal of poultry manure (PM) to avoid serious environmental impacts is a great challenge. In this work, the optimization of a 2-stage anaerobic digestion system (ADS) for PM was studied with the aim of reaching a maximal methane yield with a short hydraulic retention time (HRT). Three activities were performed: The first activity, ADS 1, consisted of evaluating the effect of the substrate concentration and the HRT on the process, with a constant organic loading rate (OLR) of 3.66 ± 0.21 gVS L-1 d-1. The second activity, ADS 2, consisted of decreasing the HRT from 9.09 to 2.74 d with a constant substrate concentration. In the third activity, ADS 3, the substrate concentration was increased from 10.09 ± 1.41 to 35.25 ± 6.20 gVS L-1 with an average HRT of 4.66 ± 0.11 d. Maximal methane yields of 0.22, 0.21, and 0.22 LCH4 gVS-1 were reached for ADS 1, ADS 2, and ADS 3, respectively, at a low HRT (3.38 to 4.66 d) and high free ammonia concentration (between 323.05 ± 56.48 and 460.93 ± 135.40 mgN-NH3 L-1). These methane yields correspond to the production of 40.36 and 42.28 cubic meters of methane per ton of PM, respectively, and a laying hen produces between 47.45 and 54.75 kg of PM per year in Chile. Finally, this is the first study of the separate and combined effects of OLR, HRT and substrate concentration on the anaerobic digestion of PM. The results demonstrate the technical feasibility of the two-stage ADS treatment of PM with a short HRT; the system tolerates variations in the total ammonia nitrogen concentration of PM throughout the year and achieves a high methane yield when the correct operational conditions are selected.


Assuntos
Criação de Animais Domésticos/métodos , Reatores Biológicos/veterinária , Galinhas , Fezes/química , Metano/metabolismo , Amônia/química , Anaerobiose , Animais , Chile , Feminino , Nitrogênio/química
16.
ACS Appl Mater Interfaces ; 10(9): 7717-7729, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29461041

RESUMO

The graphene aerogels' potential for use as both a hemostatic agent and dermal delivery system has scarcely been investigated. In this study, we used a sol-gel process for generating dry and stable composite aerogels based on graphene oxide (GO) and poly(vinyl alcohol) (PVA). Furthermore, we incorporated natural extract of País grape seed (SD) and skin (SK), rich in proanthocyanidins (PAs or condensed tannins). The effect of the incorporation of the grape extracts was investigated in relation to the aerogels' structure, coagulation performance and the release of the extracts. The results demonstrated that they have a porous structure and low density, capable of absorbing water and blood. The incorporation of 12% (w/w) of PA extracts into the aerogel increased the negative zeta potential of the material by 33% (-18.3 ± 1.3 mV), and the coagulation time was reduced by 37% and 28% during the first 30 and 60 s of contact between the aerogel and whole blood, respectively. The release of extracts from the GO-PVA-SD and GO-PVA-SK aerogels was prolonged to 3 h with 20%, probably due to the existence of strong binding between PAs andGO-PVA, both characterized by the presence of aromatic and hydroxyl groups that can form noncovalent bonds but are strong and stable enough to avoid a greater release into the medium. This study provides a new GO-based aerogel, which has a great potential use in the field of dermal delivery, wound healing and/or the treatment of trauma bleeding.


Assuntos
Grafite/química , Hemostáticos , Proantocianidinas , Água
17.
Appl Spectrosc ; 61(11): 1163-7, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18028694

RESUMO

Wine tannins are fundamental to the determination of wine quality. However, the chemical and sensorial analysis of these compounds is not straightforward and a simple and rapid technique is necessary. We analyzed the mid-infrared spectra of white, red, and model wines spiked with known amounts of skin or seed tannins, collected using Fourier transform mid-infrared (FT-MIR) transmission spectroscopy (400-4000 cm(-1)). The spectral data were classified according to their tannin source, skin or seed, and tannin concentration by means of discriminant analysis (DA) and soft independent modeling of class analogy (SIMCA) to obtain a probabilistic classification. Wines were also classified sensorially by a trained panel and compared with FT-MIR. SIMCA models gave the most accurate classification (over 97%) and prediction (over 60%) among the wine samples. The prediction was increased (over 73%) using the leave-one-out cross-validation technique. Sensory classification of the wines was less accurate than that obtained with FT-MIR and SIMCA. Overall, these results show the potential of FT-MIR spectroscopy, in combination with adequate statistical tools, to discriminate wines with different tannin levels.


Assuntos
Biologia Computacional , Limiar Sensorial , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Taninos/análise , Vinho/análise , Vinho/classificação , Análise Discriminante , Odorantes , Taninos/classificação , Paladar , Vitis/química
18.
J Agric Food Chem ; 55(18): 7294-300, 2007 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-17696445

RESUMO

Tannin content and composition are critical quality components of red wines. No spectroscopic method assessing these phenols in wine has been described so far. We report here a new method using Fourier transform mid-infrared (FT-MIR) spectroscopy and chemometric techniques for the quantitative analysis of red wine tannins. Calibration models were developed using protein precipitation and phloroglucinolysis as analytical reference methods. After spectra preprocessing, six different predictive partial least-squares (PLS) models were evaluated, including the use of interval selection procedures such as iPLS and CSMWPLS. PLS regression with full-range (650-4000 cm(-1)), second derivative of the spectra and phloroglucinolysis as the reference method gave the most accurate determination for tannin concentration (RMSEC = 2.6%, RMSEP = 9.4%, r = 0.995). The prediction of the mean degree of polymerization (mDP) of the tannins also gave a reasonable prediction (RMSEC = 6.7%, RMSEP = 10.3%, r = 0.958). These results represent the first step in the development of a spectroscopic methodology for the quantification of several phenolic compounds that are critical for wine quality.


Assuntos
Espectroscopia de Infravermelho com Transformada de Fourier , Taninos/análise , Vinho/análise , Sensibilidade e Especificidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
19.
J Agric Food Chem ; 55(9): 3675-80, 2007 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-17407309

RESUMO

A formal compositional study of the proanthocyanidins of Vitis vinifera L. cv. Carménère was conducted in this work. We first characterized the polymeric proanthocyanidins of Carménère skins, seeds, and wines. In addition, the wine astringency was analyzed and compared with Cabernet Sauvignon. Although Carménère wines had a higher proanthocyanidin concentration and mean degree of polymerization than Cabernet Sauvignon wines, the former wines were perceived as less astringent. The low seed/skin proportion in Carménère wines as compared to other varieties, as evidenced by the reduced number of seeds per berry and the higher amount of epigallocatechin subunits of Carménère wine proanthocyanidins, could explain this apparent paradox.


Assuntos
Frutas/química , Proantocianidinas/análise , Vitis/química , Vinho/análise , Chile , Paladar , Vinho/classificação
20.
Environ Technol ; 37(22): 2865-78, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27020478

RESUMO

A full-scale process for the treatment of 80 tons per day of poultry manure was designed and optimized. A total ammonia nitrogen (TAN) balance was performed at steady state, considering the stoichiometry and the kinetic data from the anaerobic digestion and the anaerobic ammonia oxidation. The equipment, reactor design, investment costs, and operational costs were considered. The volume and cost objective functions optimized the process in terms of three variables: the water recycle ratio, the protein conversion during AD, and the TAN conversion in the process. The processes were compared with and without water recycle; savings of 70% and 43% in the annual fresh water consumption and the heating costs, respectively, were achieved. The optimal process complies with the Chilean environmental legislation limit of 0.05 g total nitrogen/L.


Assuntos
Esterco , Aves Domésticas , Eliminação de Resíduos Líquidos/economia , Eliminação de Resíduos Líquidos/métodos , Amônia/metabolismo , Animais , Bactérias/metabolismo , Custos e Análise de Custo , Nitrogênio/metabolismo , Reciclagem , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA