Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Plant ; 14(9): 1489-1507, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34048950

RESUMO

In nature, plants acquire nutrients from soils to sustain growth, and at the same time, they need to avoid the uptake of toxic compounds and/or possess tolerance systems to cope with them. This is particularly challenging when the toxic compound and the nutrient are chemically similar, as in the case of phosphate and arsenate. In this study, we demonstrated that regulatory elements of the phosphate starvation response (PSR) coordinate the arsenate detoxification machinery in the cell. We showed that arsenate repression of the phosphate transporter PHT1;1 is associated with the degradation of the PSR master regulator PHR1. Once arsenic is sequestered into the vacuole, PHR1 stability is restored and PHT1;1 expression is recovered. Furthermore, we identified an arsenite responsive SKP1-like protein and a PHR1 interactor F-box (PHIF1) as constituents of the SCF complex responsible for PHR1 degradation.We found that arsenite, the form to which arsenate is reduced for compartmentalization in vacuoles, represses PHT1;1 expression, providing a highly selective signal versus phosphate to control PHT1;1 expression in response to arsenate. Collectively, our results provide molecular insights into a sensing mechanism that regulates arsenate/phosphate uptake depending on the plant's detoxification capacity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arseniatos/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arseniatos/farmacologia , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética , Vacúolos/metabolismo
2.
Front Microbiol ; 10: 1699, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417512

RESUMO

Arsenic is a toxic element widely distributed in nature, but numerous bacteria are able to resist its toxicity mainly through the ars genes encoding an arsenate reductase and an arsenite efflux pump. Some "arsenotrophic" bacteria are also able to use arsenite as energy supplier during autotrophic growth by coupling anaerobic arsenite oxidation via the arx gene products to nitrate respiration or photosynthesis. Here, we have demonstrated that Azoarcus sp. CIB, a facultative anaerobic ß-proteobacterium, is able to resist arsenic oxyanions both under aerobic and anaerobic conditions. Genome mining, gene expression, and mutagenesis studies revealed the presence of a genomic island that harbors the ars and arx clusters involved in arsenic resistance in strain CIB. Orthologous ars clusters are widely distributed in the genomes of sequenced Azoarcus strains. Interestingly, genetic and metabolic approaches showed that the arx cluster of the CIB strain encodes an anaerobic arsenite oxidase also involved in the use of arsenite as energy source. Hence, Azoarcus sp. CIB represents the prototype of an obligate heterotrophic bacterium able to use arsenite as an extra-energy source for anaerobic cell growth. The arsenic island of strain CIB supports the notion that metabolic and energetic skills can be gained by genetic mobile elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA