RESUMO
The histone lysine demethylase KDM5B is implicated in recessive intellectual disability disorders, and heterozygous, protein-truncating variants in KDM5B are associated with reduced cognitive function in the population. The KDM5 family of lysine demethylases has developmental and homeostatic functions in the brain, some of which appear to be independent of lysine demethylase activity. To determine the functions of KDM5B in hippocampus-dependent learning and memory, we first studied male and female mice homozygous for a Kdm5b Δ ARID allele that lacks demethylase activity. Kdm5b Δ ARID/ Δ ARID mice exhibited hyperactivity and long-term memory deficits in hippocampus-dependent learning tasks. The expression of immediate early, activity-dependent genes was downregulated in these mice and hyperactivated upon a learning stimulus compared with wild-type (WT) mice. A number of other learning-associated genes were also significantly dysregulated in the Kdm5b Δ ARID/ Δ ARID hippocampus. Next, we knocked down Kdm5b specifically in the adult, WT mouse hippocampus with shRNA. Kdm5b knockdown resulted in spontaneous seizures, hyperactivity, and hippocampus-dependent long-term memory and long-term potentiation deficits. These findings identify KDM5B as a critical regulator of gene expression and synaptic plasticity in the adult hippocampus and suggest that at least some of the cognitive phenotypes associated with KDM5B gene variants are caused by direct effects on memory consolidation mechanisms.
Assuntos
Hipocampo , Deficiência Intelectual , Histona Desmetilases com o Domínio Jumonji , Consolidação da Memória , Memória de Longo Prazo , Animais , Hipocampo/metabolismo , Camundongos , Masculino , Feminino , Deficiência Intelectual/genética , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Consolidação da Memória/fisiologia , Memória de Longo Prazo/fisiologia , Potenciação de Longa Duração/genética , Potenciação de Longa Duração/fisiologia , Camundongos Endogâmicos C57BL , Proteínas de Ligação a DNARESUMO
INTRODUCTION: Sex differences exist in the prevalence of neurodevelopmental disorders (NDDs). Part of the aetiology of NDDs has been proposed to be alterations in the balance between excitatory and inhibitory neurotransmission, leading to the question of whether males and females respond differently to altered neurotransmitter balance. We investigated whether pharmacological alteration of GABAA signalling in early development results in sex-dependent changes in adult behaviours associated with NDDs. METHODS: Male and female C57BL/6J mice received intraperitoneal injections of 0.5mg/kg muscimol or saline on postnatal days (P) 3-5 and were subjected to behavioural testing, specifically open field, light dark box, marble burying, sucralose preference, social interaction and olfactory habituation/dishabituation tests between P60-90. RESULTS: Early postnatal administration of muscimol resulted in reduced anxiety in the light dark box test in both male and female adult mice. Muscimol reduced sucralose preference in males, but not females, whereas female mice showed reduced social behaviours. Regional alterations in cortical thickness were observed in the weeks following GABAA receptor activation, pointing to an evolving structural difference in the brain underlying adult behaviour. CONCLUSIONS: We conclude that activation of the GABAA receptor in the first week of life resulted in long-lasting changes in a range of behaviours in adulthood following altered neurodevelopment. Sex of the individual affected the nature and severity of these abnormalities, explaining part of the varied pathophysiology and neurodevelopmental diagnosis that derive from excitatory/inhibitory imbalance.
RESUMO
Cataloguing the effects of different types of stress on behaviour and physiology in rodent models has not been comprehensively attempted. Here, we systematically review whether chronic exposure to physical stress, psychosocial stress, or both types of stress can induce different behavioural and neurobiological outcomes in male and female rodents. We found that physical stress consistently increased depressive-like behaviour, impaired social interaction and decreased body weight, while psychosocial stress consistently increased both anxiety- and depressive-like behaviour, impaired social interaction and learning and memory, increased HPA axis activity, peripheral inflammation and microglial activation, and decreased hippocampal neurogenesis in male rodents. Moreover, we found that the combined effect of both stress types resulted in a more severe pathological state defined by increased anxiety- and depressive-like behaviour, impaired social interaction and learning and memory, increased HPA axis activity and central inflammation, and reduced hippocampal neurogenesis and neural plasticity in male rodents. Phenotypes for females were less consistent, irrespective of the type of stress exposure, on account of the limited number of studies using females. This review highlights that the type of stress may indeed matter and will help animal researchers to more appropriately choose a stress/depression model that fits their research purposes.
Assuntos
Depressão , Sistema Hipotálamo-Hipofisário , Animais , Feminino , Hipocampo , Masculino , Sistema Hipófise-Suprarrenal , Roedores , Estresse PsicológicoRESUMO
Encephalopathy of prematurity (EoP) affects approximately 30% of infants born < 32 weeks gestation and is highly associated with inflammation in the foetus. Here we evaluated the efficacy of montelukast, a cysteinyl leukotriene receptor antagonist widely used to treat asthma in children, to ameliorate peripheral and central inflammation, and subsequent grey matter neuropathology and behaviour deficits in a mouse model of EoP. Male CD-1 mice were treated with intraperitoneal (i.p.) saline or interleukin-1beta (IL-1ß, 40 µg/kg, 5 µL/g body weight) from postnatal day (P)1-5 ± concomitant montelukast (1-30 mg/kg). Saline or montelukast treatment was continued for a further 5 days post-injury. Assessment of systemic and central inflammation and short-term neuropathology was performed from 4 h following treatment through to P10. Behavioural testing, MRI and neuropathological assessments were made on a second cohort of animals from P36 to 54. Montelukast was found to attenuate both peripheral and central inflammation, reducing the expression of pro-inflammatory molecules (IL-1ß, IL-6, TNF) in the brain. Inflammation induced a reduction in parvalbumin-positive interneuron density in the cortex, which was normalised with high-dose montelukast. The lowest effective dose, 3 mg/kg, was able to improve anxiety and spatial learning deficits in this model of inflammatory injury, and alterations in cortical mean diffusivity were not present in animals that received this dose of montelukast. Repurposed montelukast administered early after preterm birth may, therefore, improve grey matter development and outcome in EoP.
Assuntos
Encefalopatias , Nascimento Prematuro , Quinolinas , Recém-Nascido , Humanos , Feminino , Masculino , Animais , Camundongos , Substância Cinzenta , Nascimento Prematuro/tratamento farmacológico , Acetatos/uso terapêutico , Acetatos/farmacologia , Quinolinas/uso terapêutico , Quinolinas/farmacologia , Modelos Animais de Doenças , Inflamação/tratamento farmacológicoRESUMO
Unpredictable chronic mild stress (UCMS) is one of the most commonly used, robust and translatable models for studying the neurobiological basis of major depression. Although the model currently has multiple advantages, it does not entirely follow the trajectory of the disorder, whereby depressive symptomology can often present months after exposure to stress. Furthermore, patients with depression are more likely to withdraw in response to their stressful experience, or as a symptom of their depression, and, in turn, this withdrawal/isolation can further exacerbate the stressful experience and the depressive symptomology. Therefore, we investigated the effect(s) of 6 weeks of UCMS followed by another 6 weeks of social isolation (referred to as UCMSI), on behaviour, corticosterone stress responsivity, immune system functioning, and hippocampal neurogenesis, in young adult male mice. We found that UCMSI induced several behavioural changes resembling depression but did not induce peripheral inflammation. However, UCMSI animals showed increased microglial activation in the ventral dentate gyrus (DG) of the hippocampus and astrocyte activation in both the dorsal and ventral DG, with increased GFAP-positive cell immunoreactivity, GFAP-positive cell hypertrophy and process extension, and increased s100ß-positive cell density. Moreover, UCMSI animals had significantly reduced neurogenesis in the DG and reduced levels of peripheral vascular endothelial growth factor (VEGF) - a trophic factor produced by astrocytes and that stimulates neurogenesis. Finally, UCMSI mice also had normal baseline corticosterone levels but a smaller increase in corticosterone following acute stress, that is, the Porsolt Swim Test. Our work gives clinically relevant insights into the role that microglial and astrocyte functioning, and hippocampal neurogenesis may play in the context of stress, social isolation and depression, offering a potentially new avenue for therapeutic target.
Assuntos
Astrócitos , Isolamento Social , Animais , Comportamento Animal , Corticosterona , Depressão , Modelos Animais de Doenças , Hipocampo , Masculino , Camundongos , Microglia , Neurogênese , Estresse PsicológicoRESUMO
We identify Sox14 as an exclusive marker of inhibitory projection neurons in the lateral and interposed, but not the medial, cerebellar nuclei. Sox14+ neurons make up â¼80% of Gad1+ neurons in these nuclei and are indistinguishable by soma size from other inhibitory neurons. All Sox14+ neurons of the lateral and interposed cerebellar nuclei are generated at approximately E10/10.5 and extend long-range, predominantly contralateral projections to the inferior olive. A small Sox14+ population in the adjacent vestibular nucleus "Y" sends an ipsilateral projection to the oculomotor nucleus. Cerebellar Sox14+ and glutamatergic projection neurons assemble in non-overlapping populations at the nuclear transition zone, and their integration into a coherent nucleus depends on Sox14 function. Targeted ablation of Sox14+ cells by conditional viral expression of diphtheria toxin leads to significantly impaired motor learning. Contrary to expectations, associative learning is unaffected by unilateral Sox14+ neuron elimination in the interposed and lateral nuclei.SIGNIFICANCE STATEMENT The cerebellar nuclei are central to cerebellar function, yet how they modulate and process cerebellar inputs and outputs is still primarily unknown. Our study gives a direct insight into how nucleo-olivary projection neurons are generated, their projections, and their function in an intact behaving mouse. These neurons play a critical conceptual role in all models of cerebellar function, and this study represents the first specific analysis of their molecular identity and function and offers a powerful model for future investigation of cerebellar function in motor control and learning.
Assuntos
Aprendizagem por Associação/fisiologia , Núcleos Cerebelares/metabolismo , Núcleo Olivar/metabolismo , Fatores de Transcrição SOXB2/deficiência , Animais , Células Cultivadas , Núcleos Cerebelares/química , Cerebelo/química , Cerebelo/metabolismo , Feminino , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/química , Vias Neurais/metabolismo , Núcleo Olivar/química , Fatores de Transcrição SOXB2/genéticaRESUMO
Truncating CHD8 mutations are amongst the highest confidence risk factors for autism spectrum disorder (ASD) identified to date. Here, we report that Chd8 heterozygous mice display increased brain size, motor delay, hypertelorism, pronounced hypoactivity, and anomalous responses to social stimuli. Whereas gene expression in the neocortex is only mildly affected at midgestation, over 600 genes are differentially expressed in the early postnatal neocortex. Genes involved in cell adhesion and axon guidance are particularly prominent amongst the downregulated transcripts. Resting-state functional MRI identified increased synchronized activity in cortico-hippocampal and auditory-parietal networks in Chd8 heterozygous mutant mice, implicating altered connectivity as a potential mechanism underlying the behavioral phenotypes. Together, these data suggest that altered brain growth and diminished expression of important neurodevelopmental genes that regulate long-range brain wiring are followed by distinctive anomalies in functional brain connectivity in Chd8+/- mice. Human imaging studies have reported altered functional connectivity in ASD patients, with long-range under-connectivity seemingly more frequent. Our data suggest that CHD8 haploinsufficiency represents a specific subtype of ASD where neuropsychiatric symptoms are underpinned by long-range over-connectivity.
Assuntos
Encéfalo/fisiopatologia , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Vias Neurais/fisiopatologia , Animais , Transtorno do Espectro Autista/genética , Modelos Animais de Doenças , Haploinsuficiência , Camundongos , Camundongos Knockout , Neocórtex/metabolismo , TranscriptomaRESUMO
Midbrain dopaminergic (mDA) neurons are implicated in cognitive functions, neuropsychiatric disorders, and pathological conditions; hence understanding genes regulating their homeostasis has medical relevance. Transcription factors FOXA1 and FOXA2 (FOXA1/2) are key determinants of mDA neuronal identity during development, but their roles in adult mDA neurons are unknown. We used a conditional knockout strategy to specifically ablate FOXA1/2 in mDA neurons of adult mice. We show that deletion of Foxa1/2 results in down-regulation of tyrosine hydroxylase, the rate-limiting enzyme of dopamine (DA) biosynthesis, specifically in dopaminergic neurons of the substantia nigra pars compacta (SNc). In addition, DA synthesis and striatal DA transmission were reduced after Foxa1/2 deletion. Furthermore, the burst-firing activity characteristic of SNc mDA neurons was drastically reduced in the absence of FOXA1/2. These molecular and functional alterations lead to a severe feeding deficit in adult Foxa1/2 mutant mice, independently of motor control, which could be rescued by L-DOPA treatment. FOXA1/2 therefore control the maintenance of molecular and physiological properties of SNc mDA neurons and impact on feeding behavior in adult mice.
Assuntos
Dopamina/metabolismo , Comportamento Alimentar , Fator 3-alfa Nuclear de Hepatócito/fisiologia , Fator 3-beta Nuclear de Hepatócito/fisiologia , Neurônios/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Deleção de Genes , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/genética , Camundongos , Camundongos Knockout , Neurônios/citologia , RNA Mensageiro/genéticaRESUMO
Febrile seizures (FS) are the most common seizure type in children. Recurrent FS are a risk factor for developing temporal lobe epilepsy later in life and are known to have a strong genetic component. Experimental FS (eFS) can be elicited in mice by warm-air induced hyperthermia. We used this model to screen the chromosome substitution strain (CSS) panel derived from C57BL/6J and A/J for FS susceptibility and identified C57BL/6J-Chr2A /NaJ (CSS2), as the strain with the strongest FS susceptibility phenotype. The aim of this study was to map FS susceptibility loci and select candidate genes on mouse chromosome 2. We generated an F2 population by intercrossing the hybrids (F1 ) that were derived from CSS2 and C57BL/6J mice. All CSS2-F2 individuals were genotyped and phenotyped for eFS susceptibility, and QTL analysis was performed. Candidate gene selection was based on bioinformatics analyses and differential brain expression between CSS2 and C57BL/6J strains determined by microarray analysis. Genetic mapping of the eFS susceptibility trait identified two significant loci: FS-QTL2a (LOD-score 3.6) and FS-QTL2b (LOD-score 6.2). FS-QTL2a contained 44 genes expressed in the brain at post natal day 14. Four of these (Arl6ip6, Cytip, Fmnl2 Ifih1) contained a non-synonymous SNP comparing CSS2 and C57BL/6J, six genes (March7, Nr4a2, Gpd2, Grb14, Scn1a, Scn3a) were differentially expressed between these strains. A region within FS-QTL2a is homologous to the human FEB3 locus. The fact that we identify mouse FS-QTL2a with high FEB3 homology is strong support for the validity of the eFS mouse model to study genetics of human FS.
Assuntos
Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Locos de Características Quantitativas , Convulsões Febris/genética , Animais , Cromossomos/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polimorfismo de Nucleotídeo Único , Homologia de SequênciaRESUMO
To clarify the basis of limited responses in children and adolescents to antidepressant treatments considered standard in the treatment of adult major depressive disorder, juvenile Sprague-Dawley rats were subjected to 21-day treatment with dissimilar antidepressant drugs fluoxetine, imipramine, or vehicle control. Total RNA was extracted from brain frontal cortices and hybridized to the Affymetrix 230.2 chip. A total of 18 microarrays were analyzed (i.e., six biological replicates in three treatment groups). Transcripts identified were validated using Taqman real-time quantitative PCR methodology, and the relative expression of each gene was also determined. In both the imipramine- and fluoxetine-treated animals, expression of six genes was down-regulated (ANOVA-filtered gene expression data using dChip [version 2005]): Gpd1; Lrrn3; Sult1A1; Angptl4; Mt1a; Unknown. Furthermore, four genes were over-expressed: P4Ha1; RDG1311476; Rgc32; and SLC25A18-like by both imipramine and fluoxetine. These data demonstrate that antidepressant drugs interfere with the expression of genes involved in cell signaling, survival, and protein metabolism. Our results show that antidepressants regulate the induction of highly specific transcriptional programs in the developing frontal cortex. These findings provide novel insights into the long-term molecular actions of antidepressant drugs in the developing brain.
Assuntos
Antidepressivos/farmacologia , Córtex Cerebral/efeitos dos fármacos , Fluoxetina/farmacologia , Imipramina/farmacologia , Transcriptoma/efeitos dos fármacos , Animais , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
The immune system plays an important role in the communication between the human body and the environment, in early development as well as in adulthood. Per se, research has shown that factors such as maternal stress and nutrition as well as maternal infections can activate the immune system in the infant. A rising number of research studies have shown that activation of the immune system in early life can augment the risk of some psychiatric disorders in adulthood, such as schizophrenia and depression. The mechanisms of such a developmental programming effect are unknown; however some preliminary evidence is emerging in the literature, which suggests that adult hippocampal neurogenesis may be involved. A growing number of studies have shown that pre- and postnatal exposure to an inflammatory stimulus can modulate the number of proliferating and differentiating neural progenitors in the adult hippocampus, and this can have an effect on behaviours of relevance to psychiatric disorders. This review provides a summary of these studies and highlights the evidence supporting a neurogenic hypothesis of immune developmental programming.
Assuntos
Hipocampo/crescimento & desenvolvimento , Hipocampo/imunologia , Imunidade/fisiologia , Neurogênese/fisiologia , Animais , Animais Recém-Nascidos , Hipocampo/fisiologia , Humanos , Recém-NascidoRESUMO
The gene WFS1 encodes a protein with unknown function although its functional deficiency causes different neuropsychiatric and neuroendocrine syndromes. In the present study, we aimed to find the functional networks influenced by the time-dependent silencing of WFS1 in HEK cells. We performed whole genome gene expression profiling (Human Gene 1.0 ST Arrays) in HEK cells 24, 48, 72, and 96 h after transfection with three different WFS1 siRNAs. To verify silencing we performed quantitative RT-PCR and Western blot analysis. Analysis was conducted in two ways. First we analyzed the overall effect of the siRNA treatment on the gene expression profile. As a next step we performed time-course analysis separately for different siRNAs and combined for all siRNAs. Quantitative RT-PCR and Western blot analysis confirmed clear silencing of the expression of WFS1 after 48 h. Significant (FDR value<10%) changes in the expression of 11 genes was identified with most of these genes being related to the mitochondrial dysfunction and apoptosis. Time-course analysis confirmed significant correlations between WFS1 silencing and changes in the expression profiles of several genes. The pathways that were influenced significantly by WFS1 silencing were related to mitochondrial damage and neurodegenerative diseases. Our findings suggest a role of WFS1 gene in cell survival and its involvement in degenerative diseases.
Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Neurodegenerativas/metabolismo , Animais , Western Blotting , Linhagem Celular , Perfilação da Expressão Gênica , Inativação Gênica , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Modelos Teóricos , Doenças Neurodegenerativas/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Síndrome de Wolfram/metabolismoRESUMO
A biological understanding of the apparent sex bias in autism is lacking. Here we have identified Cntnap2 KO mice as a model system to help better understand this dimorphism. Using this model, we observed social deficits in juvenile male KO mice only. These male-specific social deficits correlated with reduced spine densities of Layer 2/3 and Layer 5 pyramidal neurons in the Anterior Cingulate Cortex, a forebrain region prominently associated with the control of social behaviour. Furthermore, in male KO mice, microglia showed an increased activated morphology and phagocytosis of synaptic structures compared to WT mice, whereas no differences were seen in female KO and WT mice. Our data suggest that sexually dimorphic microglial activity may be involved in the aetiology of ASD, disrupting the development of neural circuits that control social behaviour by overpruning synapses at a developmentally critical period.
Assuntos
Microglia , Caracteres Sexuais , Camundongos , Masculino , Feminino , Animais , Giro do Cíngulo , Camundongos Knockout , Comportamento SocialRESUMO
Multiple molecular pathways and cellular processes have been implicated in the neurobiology of autism and other neurodevelopmental conditions. There is a current focus on synaptic gene conditions, or synaptopathies, which refer to clinical conditions associated with rare genetic variants disrupting genes involved in synaptic biology. Synaptopathies are commonly associated with autism and developmental delay and may be associated with a range of other neuropsychiatric outcomes. Altered synaptic biology is suggested by both preclinical and clinical studies in autism based on evidence of differences in early brain structural development and altered glutamatergic and GABAergic neurotransmission potentially perturbing excitatory and inhibitory balance. This review focusses on the NRXN-NLGN-SHANK pathway, which is implicated in the synaptic assembly, trans-synaptic signalling, and synaptic functioning. We provide an overview of the insights from preclinical molecular studies of the pathway. Concentrating on NRXN1 deletion and SHANK3 mutations, we discuss emerging understanding of cellular processes and electrophysiology from induced pluripotent stem cells (iPSC) models derived from individuals with synaptopathies, neuroimaging and behavioural findings in animal models of Nrxn1 and Shank3 synaptic gene conditions, and key findings regarding autism features, brain and behavioural phenotypes from human clinical studies of synaptopathies. The identification of molecular-based biomarkers from preclinical models aims to advance the development of targeted therapeutic treatments. However, it remains challenging to translate preclinical animal models and iPSC studies to interpret human brain development and autism features. We discuss the existing challenges in preclinical and clinical synaptopathy research, and potential solutions to align methodologies across preclinical and clinical research. Bridging the translational gap between preclinical and clinical studies will be necessary to understand biological mechanisms, to identify targeted therapies, and ultimately to progress towards personalised approaches for complex neurodevelopmental conditions such as autism.
RESUMO
BACKGROUND: miRNAs are short single-stranded non-coding RNAs involved in post-transcriptional gene regulation that play a major role in normal biological functions and diseases. Little is currently known about how expression of miRNAs is regulated. We surveyed variation in miRNA abundance in the hippocampus of mouse inbred strains, allowing us to take a genetic approach to the study of miRNA regulation, which is novel for miRNAs. The BXD recombinant inbred panel is a very well characterized genetic reference panel which allows quantitative trait locus (QTL) analysis of miRNA abundance and detection of correlates in a large store of brain and behavioural phenotypes. RESULTS: We found five suggestive trans QTLs for the regulation of miRNAs investigated. Further analysis of these QTLs revealed two genes, Tnik and Phf17, under the miR-212 regulatory QTLs, whose expression levels were significantly correlated with miR-212 expression. We found that miR-212 expression is correlated with cocaine-related behaviour, consistent with a reported role for this miRNA in the control of cocaine consumption. miR-31 is correlated with anxiety and alcohol related behaviours. KEGG pathway analysis of each miRNA's expression correlates revealed enrichment of pathways including MAP kinase, cancer, long-term potentiation, axonal guidance and WNT signalling. CONCLUSIONS: The BXD reference panel allowed us to establish genetic regulation and characterize biological function of specific miRNAs. QTL analysis enabled detection of genetic loci that regulate the expression of these miRNAs. eQTLs that regulate miRNA abundance are a new mechanism by which genetic variation influences brain and behaviour. Analysis of one of these QTLs revealed a gene, Tnik, which may regulate the expression of a miRNA, a molecular pathway and a behavioural phenotype. Evidence of genetic covariation of miR-212 abundance and cocaine related behaviours is strongly supported by previous functional studies, demonstrating the value of this approach for discovery of new functional roles and downstream processes regulated by miRNA.
Assuntos
Variação Genética , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL/genética , Camundongos Endogâmicos DBA/genética , MicroRNAs/genética , Locos de Características Quantitativas , Animais , Comportamento Animal , Regulação da Expressão Gênica , Masculino , Camundongos , MicroRNAs/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Post-traumatic stress disorder impedes pubertal development and disrupts pulsatile LH secretion in humans and rodents. The posterodorsal sub-nucleus of the medial amygdala (MePD) is an upstream modulator of the hypothalamic gonadotropin-releasing hormone (GnRH) pulse generator, pubertal timing, as well as emotional processing and anxiety. Psychosocial stress exposure alters neuronal activity within the MePD increasing the expression of Urocortin3 (Ucn3) and its receptor corticotropin-releasing factor type-2 receptor (CRFR2) while enhancing the inhibitory output from the MePD to key hypothalamic reproductive centres. We test the hypothesis that psychosocial stress, processed by the MePD, is relayed to the hypothalamic GnRH pulse generator to delay puberty in female mice. We exposed C57Bl6/J female mice to the predator odor, 2,4,5-Trimethylthiazole (TMT), during pubertal transition and examined the effect on pubertal timing, pre-pubertal LH pulses and anxiety-like behaviour. Subsequently, we virally infected Ucn3-cre-tdTomato female mice with stimulatory DREADDs targeting MePD Ucn3 neurons and determined the effect on pubertal timing and pre-pubertal LH pulse frequency. Exposure to TMT during pubertal development delayed puberty, suppressed pre-pubertal LH pulsatility and enhanced anxiety-like behaviour, while activation of MePD Ucn3 neurons reduced LH pulse frequency and delayed puberty. Early psychosocial stress exposure decreases GnRH pulse generator frequency delaying puberty while inducing anxiety-behaviour in female mice, an effect potentially involving Ucn3 neurons in the MePD.
Assuntos
Hormônio Luteinizante , Urocortinas , Tonsila do Cerebelo/metabolismo , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Luteinizante/metabolismo , Camundongos , Maturidade Sexual , Urocortinas/metabolismo , Urocortinas/farmacologiaRESUMO
C-type natriuretic peptide (CNP) is highly expressed in the central nervous system (CNS) and key to neuronal development; however, a broader role for CNP in the CNS remains unclear. To address this deficit, we investigated behavioral, sensory and motor abnormalities and blood-brain barrier (BBB) integrity in a unique mouse model with inducible, global deletion of CNP (gbCNP-/-). gbCNP-/- mice and wild-type littermates at 12 (young adult) and 65 (aged) weeks of age were investigated for changes in gait and motor coordination (CatWalk™ and rotarod tests), anxiety-like behavior (open field and elevated zero maze tests), and motor and sensory function (modified neurological severity score [mNSS] and primary SHIRPA screen). Vascular permeability was assessed in vivo (Miles assay) with complementary in vitro studies conducted in primary murine brain endothelial cells. Young adult gbCNP-/- mice had normal gait but reduced motor coordination, increased locomotor activity in the open field and elevated zero maze, and had a higher mNSS score. Aged gbCNP-/- animals developed recurrent spontaneous seizures and had impaired gait and wide-ranging motor and sensory dysfunction. Young adult and aged gbCNP-/- mice exhibited increased BBB permeability, which was partially restored in vitro by CNP administration. Cultured brain endothelial cells from gbCNP-/- mice had an abnormal ZO-1 protein distribution. These data suggest that lack of CNP in the CNS impairs tight junction protein arrangement and increases BBB permeability, which is associated with changes in locomotor activity, motor coordination and late-onset seizures.
RESUMO
The Wfs1 gene codes for a protein with unknown function, but deficiency in this protein results in a range of neuropsychiatric and neuroendocrine syndromes. In the present study we aimed to find the functional networks influenced by Wfs1 in the hypothalamus. We performed gene expression profiling (Mouse Gene 1.0 ST Arrays) in Wfs1-deficient mice; 305 genes were differentially expressed with nominal P value<0.01. FDR (false discovery rate)-adjusted P values were significant (0.007) only for two genes: C4b (t=9.66) and Wfs1 (t=-9.03). However, several genes related to G protein signaling were very close to the FDR-adjusted significance level, such as Rgs4 (regulator of G protein signaling 4) that was downregulated (-0.34, t=-5.4) in Wfs1-deficient mice. Changes in Rgs4 and C4b expression were confirmed by QRT-PCR. In humans, Rgs4 is in the locus for bipolar disease (BPD), and its expression is downregulated in BPD. C4b is a gene related to the neurodegenerative diseases. Functional analysis including the entire data set revealed significant alterations in the canonical pathway "G protein-coupled receptor signaling." The gene expression profile in the hypothalami of the Wfs1 mutant mice was significantly similar to the profiles of following biological functions: psychological disorders, bipolar disorder, mood disorder. In conclusion, hypothalamic gene expression profile resembles with some molecular pathways functionally related to the clinical syndromes in the Wolfram syndrome patients.
Assuntos
Proteínas de Ligação ao GTP/metabolismo , Perfilação da Expressão Gênica , Hipotálamo/metabolismo , Proteínas de Membrana/genética , Transdução de Sinais/genética , Animais , Doença/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , Guanosina Trifosfato/metabolismo , Proteínas de Membrana/deficiência , Camundongos , Camundongos Knockout , Camundongos Mutantes , Análise de Sequência com Séries de Oligonucleotídeos , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Glycogen synthase kinase 3 (GSK3) is a widely expressed, constitutively active, serine/threonine kinase that is negatively regulated by both Wnt and insulin via two independent signalling pathways. GSK3 is an important mediator in many physiological processes including glycogen metabolism, apoptosis and gene transcription. In addition, GSK3 is implicated in diseases such as Alzheimer's, schizophrenia and cancer, where it exhibits deregulated activity. In this study, we sought to determine the neuronal genes regulated by both Wnt and insulin in an in vitro cell culture model to further elucidate the signalling roles GSK3 plays in the CNS. Affymetrix Rat Genome 230 2.0 whole genome microarrays were used to explore the expression profiles of rat primary cortical neurones treated with recombinant Wnt3a (10 nM) or insulin (50 nM) for 2 h. Following a conservative correction (Bonferroni) for multiple testing, seven genes were identified to be differentially expressed from controls; four of these genes were regulated by insulin and three genes were regulated by both insulin and Wnt3a. The data were also analysed using a false discovery rate cut off, which is a less stringent correction for multiple testing. This approach yielded 105 genes that were differentially regulated from controls; 72 of the gene changes were attributable to insulin treatment, 11 were because of Wnt3a treatment and 22 genes were altered by both insulin and Wnt3a. These data demonstrate that the Wnt and insulin pathways exhibit both divergent and overlapping signalling activities in neuronal cells. The overlapping transcriptional response was not attributable to Wnt3a activating Akt. These findings have ramifications for neurodevelopment and neurological diseases, in which the Wnt and insulin signalling pathways are implicated.
Assuntos
Córtex Cerebral/metabolismo , Perfilação da Expressão Gênica , Insulina/genética , Neurônios/metabolismo , Proteínas Wnt/genética , Animais , Western Blotting , Núcleo Celular/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Regulação para Baixo/genética , Regulação para Baixo/fisiologia , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Insulina/fisiologia , Luciferases/análise , Análise em Microsséries , Fosforilação , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima/genética , Regulação para Cima/fisiologia , Proteínas Wnt/fisiologia , Proteína Wnt3 , beta Catenina/metabolismoRESUMO
RATIONALE: Selecting an effective treatment for patients with major depressive disorder is a perpetual problem for psychiatrists. It is of particular interest to explore the interaction between genetic predisposition and environmental factors. OBJECTIVES: Mouse inbred strains vary in baseline performance in depression-related behaviour tests, which were originally validated as tests of antidepressant response. Therefore, we investigated interactions between environmental stress, genotype, and drug response in a multifactorial behaviour study. METHOD: Our study design included four inbred mouse strains (129S1/SvlmJ, C57LB/6J, DBA/2J and FVB/NJ) of both sexes, two subjected to environmental manipulations (maternal separation and unpredictable chronic mild stress) and two representative of treatment with antidepressants (escitalopram and nortryptiline vs. vehicle). The mice treated with antidepressants were further divided into those administered acute (1 day) and subchronic (14 days) regimes, giving 144 experimental groups in all, each with at least seven animals. All animals were tested using the Porsolt forced-swim test (FST) and the hole-board test. RESULTS: Despite a 24-h maternal separation (MS) or a 14-day unpredictable chronic mild stress protocol, most animals seemed to be resilient to the stress induced. One compelling finding is the long-lasting, strain-specific effect of MS resulting in an increased depression-like behaviour in the Porsolt FST and elevated anxiety-related behaviour in the hole-board test seen in 129S1/SvImJ mice. Nortriptyline was effective in reversing the effect of MS in the FST in 129S1/SvlmJ male mice. CONCLUSION: A single 24-h maternal separation of pups from their mother on postnatal day 9 is a sufficient insult to result in a depression-like phenotype in adult 129S1/SvImJ mice but not in C57LB/6 J, DBA/2 J, and FVB/NJ mice.