Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1388895, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903785

RESUMO

Given the increasing pressure on water bodies, it is imperative to explore sustainable methodologies for wastewater treatment and reuse. The simultaneous presence of multiples contaminants in complex wastewater, such as the liquid effluents from biogas plants, can compromise biological treatment effectiveness for reclaiming water. Vertical subsurface flow constructed wetlands were established as low-cost decentralized wastewater treatment technologies to treat the liquid fraction of digestate from municipal organic waste with metals, antibiotics, and antibiotic resistance genes, to allow its reuse in irrigation. Twelve lab-scale planted constructed wetlands were assembled with gravel, light expanded clay aggregate and sand, testing four different treating conditions (liquid digestate spiked with oxytetracycline, sulfadiazine, or ofloxacin, at 100 µg/ L, or without dosing) during 3 months. Physicochemical parameters (pH, chemical oxygen demand (COD), nutrients, metals, and antibiotics), the microbial communities dynamics (through 16S high-throughput sequencing) and antibiotic resistance genes removal (qPCR) were monitored in influents and effluents. Systems removed 85.8%-96.9% of organic matter (as COD), over 98.1% of ammonium and phosphate ions, and 69.3%-99.4% of nitrate and nitrite ions, with no significant differences between the presence or absence of antibiotics. Removal of Fe, Mn, Zn, Cu, Pb and Cr exceeded 82% in all treatment cycles. The treatment also removed oxytetracycline, sulfadiazine and ofloxacin over 99%, and decreased intl1, tetA, tetW, sul1 and qnrS gene copies. Nonetheless, after 3 months of ofloxacin dosing, qnrS gene started being detected. Removal processes relied on high HRT (14 days) and various mechanisms including sorption, biodegradation, and precipitation. Microbial community diversity in liquid digestate changed significantly after treatment in constructed wetlands with a decrease in the initial Firmicutes dominance, but with no clear effect of antibiotics on the microbial community structure. Removals above 85% and 94% were observed for Streptococcus and Clostridium, respectively. Results suggest that vertical subsurface flow constructed wetlands were a suitable technology for treating the liquid digestate to reuse it in irrigation agricultural systems, contributing to the circular bioeconomy concept. However, a more profound understanding of effective wastewater treatment strategies is needed to avoid antibiotic resistance genes dissemination.

2.
Toxics ; 9(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34678953

RESUMO

Various contaminants of emerging concern (CECs) have been detected in different ecosystems, posing a threat to living organisms and the environment. Pharmaceuticals are among the many CECs that enter the environment through different pathways, with wastewater treatment plants being the main input of these pollutants. Several technologies for the removal of these pollutants have been developed through the years, but there is still a lack of sustainable technologies suitable for being applied in natural environments. In this regard, solutions based on natural biological processes are attractive for the recovery of contaminated environments. Bioremediation is one of these natural-based solutions and takes advantage of the capacity of microorganisms to degrade different organic pollutants. Degradation of pollutants by native microorganisms is already known to be an important detoxification mechanism that is involved in natural attenuation processes that occur in the environment. Thus, bioremediation technologies based on the selection of natural degrading bacteria seem to be a promising clean-up technology suitable for application in natural environments. In this review, an overview of the occurrence and fate of pharmaceuticals is carried out, in which bioremediation tools are explored for the removal of these pollutants from impacted environments.

3.
Front Microbiol ; 12: 633659, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967978

RESUMO

Oil spills are among the most catastrophic events to marine ecosystems and current remediation techniques are not suitable for ecological restoration. Bioremediation approaches can take advantage of the activity of microorganisms with biodegradation capacity thus helping to accelerate the recovery of contaminated environments. The use of native microorganisms can increase the bioremediation efficiency since they have higher potential to survive in the natural environment while preventing unpredictable ecological impacts associated with the introduction of non-native organisms. In order to know the geographical scale to which a native bioremediation consortium can be applied, we need to understand the spatial heterogeneity of the natural microbial communities with potential for hydrocarbon degradation. In the present study, we aim to describe the genetic diversity and the potential of native microbial communities to degrade petroleum hydrocarbons, at an early stage of bioremediation, along the NW Iberian Peninsula coast, an area particularly susceptible to oil spills. Seawater samples collected in 47 sites were exposed to crude oil for 2 weeks, in enrichment experiments. Seawater samples collected in situ, and samples collected after the enrichment with crude oil, were characterized for prokaryotic communities by using 16S rRNA gene amplicon sequencing and predictive functional profiling. Results showed a drastic decrease in richness and diversity of microbial communities after the enrichment with crude oil. Enriched microbial communities were mainly dominated by genera known to degrade hydrocarbons, namely Alcanivorax, Pseudomonas, Acinetobacter, Rhodococcus, Flavobacterium, Oleibacter, Marinobacter, and Thalassospira, without significant differences between geographic areas and locations. Predictive functional profiling of the enriched microbial consortia showed a high potential to degrade the aromatic compounds aminobenzoate, benzoate, chlorocyclohexane, chlorobenzene, ethylbenzene, naphthalene, polycyclic aromatic compounds, styrene, toluene, and xylene. Only a few genera contributed for more than 50% of this genetic potential for aromatic compounds degradation in the enriched communities, namely Alcanivorax, Thalassospira, and Pseudomonas spp. This work is a starting point for the future development of prototype consortia of hydrocarbon-degrading bacteria to mitigate oil spills in the Iberian NW coast.

4.
Sci Total Environ ; 655: 796-806, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30577142

RESUMO

The present work aimed to explore the potential of autochthonous microorganisms from an urban estuary and from activated sludge of an associated wastewater treatment plant (WWTP), for biodegradation of an antidepressant drug, paroxetine, and on a cholesterol-lowering agent, bezafibrate. These compounds were chosen as representatives of extensively used pharmaceuticals. Autochthonous microorganisms from the indicated sources were exposed to the target pharmaceuticals (1 mg/L) in co-metabolism with sodium acetate (500 mg/L) along a two-weeks period, for a total of 7 two-weeks periods (here referred as cycles). Exposures were carried out in batch mode, under different incubation conditions (agitation vs. static). Removal of pharmaceuticals was monitored at the end of each cycle, by analysing the culture medium. For paroxetine, fluoride ion release was also followed as an indicator of defluorination of the molecule. The structure of the bacterial communities was analysed by ARISA (Automated rRNA Intergenic Spacer Analysis), at the beginning of the experiment and at the end of the first and the last cycles to identify substantial changes associated with the time of exposure, the incubation conditions and the presence and type of pharmaceuticals. Incubation conditions affected not only the bacterial community structure, but also the biodegradation efficiency. At the beginning of the experiment, removal of target pharmaceuticals was found to be lower under agitation than under static conditions, but at the end of the experiment, results showed high removal of the pharmaceuticals from the culture medium (>97%) under both conditions, mainly by microbiological processes. For paroxetine, adsorption and abiotic processes also had an important influence on its removal, but defluorination only occurred in the presence of microorganisms. These results highlight that autochthonous microorganisms from estuarine sediments and WWTP sludge have high ability to remove the selected pharmaceuticals with relevant implications for the development of new bioremediation tools for environmental restoration.


Assuntos
Estuários , Sedimentos Geológicos/microbiologia , Preparações Farmacêuticas/metabolismo , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Adsorção , Bezafibrato/isolamento & purificação , Bezafibrato/metabolismo , Biodegradação Ambiental , Microbiota/genética , Paroxetina/isolamento & purificação , Paroxetina/metabolismo , Preparações Farmacêuticas/isolamento & purificação , Fatores de Tempo , Poluentes Químicos da Água/isolamento & purificação
5.
Sci Total Environ ; 581-582: 801-810, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28069300

RESUMO

This study aimed to investigate Cu oxide nanoparticles (CuO NP) effect on microbial communities associated with salt marsh plants (Halimione portulacoides and Pragmites australis) rhizosphere and its implications for phytoremediation processes. Experiments were conducted, under controlled conditions, over one week. Rhizosediment soaked in the respective elutriate (a simplified natural medium) with or without plants, was doped with CuO NP or with Cu in ionic form. Microbial community in rhizosediments was characterized in terms of abundance (by DAPI) and structure (by ARISA). Metal uptake by plants was evaluated by measuring Cu in plant tissues (by atomic absorption spectroscopy). Results revealed significant metal uptake but only in plant roots, which was significantly lower (H. portulacoides) or not significant (P. australis) when the metal was in NP form. Microbial community structure was significantly changed by the treatment (absence/presence of Cu, ionic Cu or CuO NP) as showed by multivariate analysis of ARISA profiles and confirmed by analysis of similarities (Global test - one way ANOSIM). Moreover, in P. australis rhizosediments microbial abundance, bacterial richness and diversity indexes were significantly affected (increased or decreased) due to metal presence whereas in H. portulacoides rhizosediment microbial abundance showed a significant decrease, particularly when the metal was in NP form. Accordingly, Cu presence affected the response of the rhizosphere microbial community and in some cases that response was significantly different when Cu was in NP form. The response of the microbial communities to Cu NP might also contribute to the lower metal accumulation by plants when the metal was in this form. So, Cu NP may cause disturbances in ecosystems functions, ultimately affecting phytoremediation processes. These facts should be considered regarding the use of appropriate salt marshes plants to remediate moderately impacted areas such as estuaries, where NPs can be found.


Assuntos
Cobre/análise , Rizosfera , Microbiologia do Solo , Poluentes do Solo/análise , Áreas Alagadas , Biodegradação Ambiental , Estuários , Nanopartículas , Óxidos , Poaceae/microbiologia , Portugal
6.
Mar Pollut Bull ; 119(1): 176-183, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28363429

RESUMO

This study investigated the uptake of silver nanoparticles (AgNPs) by a salt marsh plant, Phragmites australis, as well as AgNPs effects on rhizospheric microbial community, evaluating the implications for phytoremediation processes. Experiments were carried out with elutriate solution doped with Ag, either in ionic form or in NP form. Metal uptake was evaluated in plant tissues, elutriate solutions and sediments (by AAS) and microbial community was characterized in terms of bacterial community structure (evaluated by ARISA). Results showed Ag accumulation but only in plant belowground tissues and only in the absence of rhizosediment, the presence of sediment reducing Ag availability. But in plant roots Ag accumulation was higher when Ag was in NP form. Multivariate analysis of ARISA profiles showed significant effect of the absence/presence of Ag either in ionic or NP form on microbial community structure, although without significant differences among bacterial richness and diversity. Overall, P. australis can be useful for phytoremediation of medium contaminated with Ag, including with AgNPs. However, the presence of Ag in either forms affected the microbial community structure, which may cause disturbances in ecosystems function and compromise phytoremediation processes. Such considerations need to be address regarding environmental management strategies applied to the very important estuarine areas. CAPSULE: The form in which the metal was added affected metal uptake by Phragmites australis and rhizosediment microbial community structure, which can affect phytoremediation.


Assuntos
Biodegradação Ambiental , Nanopartículas Metálicas , Poaceae , Áreas Alagadas , Nanopartículas , Raízes de Plantas/química , Prata/farmacocinética
7.
Mar Environ Res ; 112(Pt A): 104-12, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26498844

RESUMO

Wrack detritus plays a significant role in shaping community dynamics and food-webs on sandy beaches. Macroalgae is the most abundant beach wrack, and it is broken down by the combination of environmental processes, macrofauna grazing, and microbial degradation before returning to the sea as nutrients. The role of solar radiation, algal species and beach macrofauna as ecological drivers for bacterial assemblages associated to wrack was investigated by experimental manipulation of Laminaria ochroleuca and Sargassum muticum. We examined the effects of changes in solar radiation on wrack-associated bacterial assemblages by using cut-off filters: PAR + UVA + UVB (280-700 nm; PAB), PAR + UVA (320-700 nm; PA), PAR (400-700 nm; P), and a control with no filter (C). Results showed that moderate changes in UVR are capable to promote substantial differences on bacterial assemblages so that wrack patches exposed to full sunlight treatments (C and PAB) showed more similar assemblages among them than compared to patches exposed to treatments that blocked part of the solar radiation (P and PA). Our findings also suggested that specific algal nutrient quality-related variables (i.e. nitrogen, C:N ratio and phlorotannins) are main determinants of bacterial dynamics on wrack deposits. We showed a positive relationship between beach macrofauna, especially the most abundant and active wrack-users, the amphipod Talitrus saltator and the coleopteran Phaleria cadaverina, and both bacterial abundance and richness. Moderate variations in natural solar radiation and shifts in the algal species entering beach ecosystems can modify the role of wrack in the energy-flow of nearshore environments with unknown ecological implications for coastal ecosystems.


Assuntos
Invertebrados/fisiologia , Laminaria/fisiologia , Microbiota , Sargassum/fisiologia , Raios Ultravioleta , Animais , Fenômenos Fisiológicos Bacterianos , Praias , Ecossistema , Espanha
8.
Front Chem ; 3: 20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25853122

RESUMO

Fining agents derived from animal and mineral sources are widely used to clarify and stabilize white wines. Nevertheless, health and environmental problems are being raised, concerning the allergenic and environmental impact of some of those fining products. In this study, our aim is to validate the potential of yeast protein extracts, obtained from an alternative and safe source, naturally present in wine: oenological yeasts. Three untreated white wines were used in this work in order to evaluate the impact of these novel yeast protein extracts (YPE) in terms of the wine clarification and stabilization improvement. Two separated fining trials were thus conducted at laboratory scale and the yeast alternatives were compared with reference fining agents, obtained from mineral, animal and vegetable origins. Our results indicate that YPE were capable to promote (i) brilliance/color improvement, (ii) turbidity reduction (76-89% comparing with the untreated wines), and (iii) production of compact and homogeneous lees (44% smaller volume than obtained with bentonite). Additionally, after submitting wines to natural and forced oxidations, YPE treatments revealed (iv) different forms of colloidal stabilization, by presenting comparable or superior effects when particularly compared to casein. Altogether, this study reveals that YPE represent a promising alternative for white wine fining, since they are resultant from a natural and more sustainable origin, at present not regarded as potential allergenic according to Regulation (EC) No. 1169/2011.

10.
Sci Total Environ ; 532: 301-8, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26081732

RESUMO

Salt marsh plants and associated microorganisms can have an important role in contaminant removal from estuaries, through bioremediation processes. Nevertheless, the interaction between emerging contaminants, namely antibiotics, and plant-microorganism associations in estuarine environment are still scarcely known. In this vein, the aim of the present study was to evaluate, in controlled conditions, the response of a salt marsh plant-microorganism association to a contamination with a veterinary antibiotic. For that a salt marsh plant (Phragmites australis) and its respective rhizosediment were collected in a temperate estuary (Lima estuary, NW Portugal) and exposed for 7 days to enrofloxacin (ENR) under different nutritional conditions in sediment elutriates. Response was evaluated in terms of ENR removal and changes in microbial community structure (evaluated by ARISA) and abundance (estimated by DAPI). In general, no significant changes were observed in microbial abundance. Changes in bacterial richness and diversity were observed but only in unplanted systems. However, multivariate analysis of ARISA profiles showed significant effect of both the presence of plant and type of treatment on the microbial community structure, with significant differences among all treatment groups. In addition, plants and associated microorganisms presented a potential for antibiotic removal that, although highly dependent on their nutritional status, can be a valuable asset to recover impacted areas such as estuarine ones.


Assuntos
Antibacterianos/análise , Monitoramento Ambiental , Microbiologia da Água , Poluentes Químicos da Água/análise , Áreas Alagadas , Antibacterianos/toxicidade , Estuários , Poaceae , Portugal , Poluentes Químicos da Água/toxicidade
11.
Bioresour Technol ; 182: 26-33, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25679496

RESUMO

This study aimed to evaluate the response of the microbial community from CWs microcosms tested for the removal of two veterinary antibiotics, enrofloxacin (ENR) and tetracycline (TET), from livestock industry wastewater. Three treatments were tested (control, ENR or TET (100 µg L(-1))) over 12 weeks in microcosms unplanted and planted with Phragmites australis. CWs removal efficiency was relatively stable along time, with removals higher than 98% for ENR and 94% for TET. In addition, CWs were able to reduce wastewater toxicity, independently of antibiotics presence. Despite no significant differences were observed in terms of microbial abundance, bacterial richness or diversity, analysis of similarities (two-way crossed ANOSIM) showed a significant effect of both time and treatments in bacterial community structure. This study points to CWs applicability for veterinary antibiotics removal from livestock wastewaters, showing that CWs microbial communities were able to adapt without significant changes in their diversity or depuration capacity.


Assuntos
Antibacterianos/metabolismo , Consórcios Microbianos , Drogas Veterinárias/metabolismo , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Áreas Alagadas , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Biodegradação Ambiental , Biodiversidade , Enrofloxacina , Fluoroquinolonas/metabolismo , Consórcios Microbianos/efeitos dos fármacos , Poaceae , Tetraciclina/metabolismo , Tetraciclina/farmacologia , Drogas Veterinárias/isolamento & purificação , Drogas Veterinárias/farmacologia , Águas Residuárias/química , Águas Residuárias/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA