Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 22(6): e3002641, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833481

RESUMO

In utero exposure to maternal obesity programs increased obesity risk. Animal models show that programmed offspring obesity is preceded by hyperphagia, but the mechanisms that mediate these changes are unknown. Using a mouse model of maternal obesity, we observed increased intake of a high-fat diet (HFD) in offspring of obese mothers that precedes the development of obesity. Through small RNA sequencing, we identified programmed overexpression of hypothalamic miR-505-5p that is established in the fetus, lasts to adulthood and is maintained in hypothalamic neural progenitor cells cultured in vitro. Metabolic hormones and long-chain fatty acids associated with obesity increase miR-505-5p expression in hypothalamic neurons in vitro. We demonstrate that targets of miR-505-5p are enriched in fatty acid metabolism pathways and overexpression of miR-505-5p decreased neuronal fatty acid metabolism in vitro. miR-505-5p targets are associated with increased BMI in human genetic studies. Intra-cerebroventricular injection of miR-505-5p in wild-type mice increased HFD intake, mimicking the phenotype observed in offspring exposed to maternal obesity. Conversely, maternal exercise intervention in an obese mouse pregnancy rescued the programmed increase of hypothalamic miR-505-5p in offspring of obese dams and reduced HFD intake to control offspring levels. This study identifies a novel mechanism by which maternal obesity programs obesity in offspring via increased intake of high-fat foods.


Assuntos
Dieta Hiperlipídica , Ácidos Graxos , Hipotálamo , MicroRNAs , Obesidade Materna , Animais , Feminino , Humanos , Masculino , Camundongos , Gravidez , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Hipotálamo/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , MicroRNAs/genética , Neurônios/metabolismo , Obesidade/metabolismo , Obesidade/genética , Obesidade Materna/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/genética
2.
Diabetologia ; 65(12): 2132-2145, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36112170

RESUMO

AIMS/HYPOTHESIS: Metformin is increasingly used to treat gestational diabetes (GDM) and pregnancies complicated by pregestational type 2 diabetes or polycystic ovary syndrome but data regarding long-term offspring outcome are lacking in both human studies and animal models. Using a mouse model, this study investigated the effects of maternal metformin intervention during obese glucose-intolerant pregnancy on adiposity, hepatic steatosis and markers of metabolic health of male and female offspring up to the age of 12 months. METHODS: C57BL/6J female mice were weaned onto either a control diet (Con) or, to induce pre-conception obesity, an obesogenic diet (Ob). The respective diets were maintained throughout pregnancy and lactation. These obese dams were then randomised to the untreated group or to receive 300 mg/kg oral metformin hydrochloride treatment (Ob-Met) daily during pregnancy. In male and female offspring, body weights and body composition were measured from 1 month until 12 months of age, when serum and tissues were collected for investigation of adipocyte cellularity (histology), adipose tissue inflammation (histology and quantitative RT-PCR), and hepatic steatosis and fibrosis (histochemistry and modified Folch assay). RESULTS: At 12 months of age, male Ob and Ob-Met offspring showed increased adiposity, adipocyte hypertrophy, elevated expression of proinflammatory genes, hyperleptinaemia and hepatic lipid accumulation compared with Con offspring. Male Ob-Met offspring failed to show hyperplasia between 8 weeks and 12 months, indicative of restricted adipose tissue expansion, resulting in increased immune cell infiltration and ectopic lipid deposition. Female Ob offspring were relatively protected from these phenotypes but Ob-Met female offspring showed increased adiposity, adipose tissue inflammation, hepatic lipid accumulation, hyperleptinaemia and hyperinsulinaemia compared with Con female offspring. CONCLUSIONS/INTERPRETATION: Maternal metformin treatment of obese dams increased offspring metabolic risk factors in a sex- and age-dependent manner. These observations highlight the importance of following up offspring of both sexes beyond early adulthood after interventions during pregnancy. Our findings illustrate the complexity of balancing short-term benefits to mother and child vs any potential long-term metabolic effects on the offspring when prescribing therapeutic agents that cross the placenta.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Fígado Gorduroso , Metformina , Efeitos Tardios da Exposição Pré-Natal , Humanos , Gravidez , Animais , Camundongos , Criança , Masculino , Feminino , Adulto , Lactente , Metformina/farmacologia , Metformina/uso terapêutico , Glucose , Diabetes Mellitus Tipo 2/tratamento farmacológico , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Composição Corporal , Fígado Gorduroso/patologia , Inflamação , Lipídeos , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Dieta Hiperlipídica/efeitos adversos
3.
J Physiol ; 600(4): 903-919, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34505282

RESUMO

Maternal obesity is a global problem that increases the risk of short- and long-term adverse outcomes for mother and child, many of which are linked to gestational diabetes mellitus. Effective treatments are essential to prevent the transmission of poor metabolic health from mother to child. Metformin is an effective glucose lowering drug commonly used to treat gestational diabetes mellitus; however, its wider effects on maternal and fetal health are poorly explored. In this study we used a mouse (C57Bl6/J) model of diet-induced (high sugar/high fat) maternal obesity to explore the impact of metformin on maternal and feto-placental health. Metformin (300 mg kg-1  day-1 ) was given to obese females via the diet and was shown to achieve clinically relevant concentrations in maternal serum (1669 ± 568 nM in late pregnancy). Obese dams developed glucose intolerance during pregnancy and had reduced uterine artery compliance. Metformin treatment of obese dams improved maternal glucose tolerance, reduced maternal fat mass and restored uterine artery function. Placental efficiency was reduced in obese dams, with increased calcification and reduced labyrinthine area. Consequently, fetuses from obese dams weighed less (P < 0.001) at the end of gestation. Despite normalisation of maternal parameters, metformin did not correct placental structure or fetal growth restriction. Metformin levels were substantial in the placenta and fetal circulation (109.7 ± 125.4 nmol g-1 in the placenta and 2063 ± 2327 nM in fetal plasma). These findings reveal the distinct effects of metformin administration during pregnancy on mother and fetus and highlight the complex balance of risk vs. benefits that are weighed in obstetric medical treatments. KEY POINTS: Maternal obesity and gestational diabetes mellitus have detrimental short- and long-term effects for mother and child. Metformin is commonly used to treat gestational diabetes mellitus in many populations worldwide but the effects on fetus and placenta are unknown. In a mouse model of diet-induced obesity and glucose intolerance in pregnancy we show reduced uterine artery compliance, placental structural changes and reduced fetal growth. Metformin treatment improved maternal metabolic health and uterine artery compliance but did not rescue obesity-induced changes in the fetus or placenta. Metformin crossed the placenta into the fetal circulation and entered fetal tissue. Metformin has beneficial effects on maternal health beyond glycaemic control. However, despite improvements in maternal physiology, metformin did not prevent fetal growth restriction or placental ageing. The high uptake of metformin into the placental and fetal circulation highlights the potential for direct immediate effects of metformin on the fetus with possible long-term consequences postnatally.


Assuntos
Intolerância à Glucose , Metformina , Obesidade Materna , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Retardo do Crescimento Fetal , Intolerância à Glucose/metabolismo , Humanos , Transmissão Vertical de Doenças Infecciosas , Metformina/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Placenta/metabolismo , Gravidez
4.
Int J Obes (Lond) ; 46(2): 269-278, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34663892

RESUMO

OBJECTIVE: This study investigated the effect of maternal obesity on aged-male offspring liver phenotype and hepatic expression of a programmed miRNA. METHODS: A mouse model (C57BL/6 J) of maternal diet-induced obesity was used to investigate fasting-serum metabolites, hepatic lipid content, steatosis, and relative mRNA levels (RT-PCR) and protein expression (Western blotting) of key components involved in hepatic and mitochondrial metabolism in 12-month-old offspring. We also measured hepatic lipid peroxidation, mitochondrial content, fibrosis stage, and apoptosis in the offspring. To investigate potential mechanisms leading to the observed phenotype, we also measured the expression of miR-582 (a miRNA previously implicated in liver cirrhosis) in 8-week-old and 12-month-old offspring. RESULTS: Body weight and composition was similar between 8-week-old offspring, however, 12-month-old offspring from obese mothers had increased body weight and fat mass (19.5 ± 0.8 g versus 10.4 ± 0.9 g, p < 0.001), as well as elevated serum levels of LDL and leptin and hepatic lipid content (21.4 ± 2.1 g versus 12.9 ± 1.8 g, p < 0.01). This was accompanied by steatosis, increased Bax/Bcl-2 ratio, and overexpression of p-SAPK/JNK, Tgfß1, Map3k14, and Col1a1 in the liver. Decreased levels of Bcl-2, p-AMPKα, total AMPKα and mitochondrial complexes were also observed. Maternal obesity was associated with increased hepatic miR-582-3p (p < 0.001) and miR-582-5p (p < 0.05). Age was also associated with an increase in both miR-582-3p and miR-582-5p, however, this was more pronounced in the offspring of obese dams, such that differences were greater in 12-month-old animals (-3p: 7.34 ± 1.35 versus 1.39 ± 0.50, p < 0.0001 and -5p: 4.66 ± 1.16 versus 1.63 ± 0.65, p < 0.05). CONCLUSION: Our findings demonstrate that maternal diet-induced obesity has detrimental effects on offspring body composition as well as hepatic phenotype that may be indicative of accelerated-ageing phenotype. These whole-body and cellular phenotypes were associated with age-dependent changes in expression of miRNA-582 that might contribute mechanistically to the development of metabolic disorders in the older progeny.


Assuntos
Comportamento Alimentar/psicologia , Fígado/metabolismo , Doenças Metabólicas/dietoterapia , Fatores Etários , Animais , Modelos Animais de Doenças , Feminino , Expressão Gênica/fisiologia , Fígado/fisiopatologia , Exposição Materna/efeitos adversos , Exposição Materna/estatística & dados numéricos , Doenças Metabólicas/etiologia , Camundongos , Camundongos Endogâmicos C57BL/metabolismo , Obesidade/complicações , Obesidade/dietoterapia , RNA Mensageiro
5.
Diabetologia ; 64(4): 890-902, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33501603

RESUMO

AIMS/HYPOTHESIS: Levels of the microRNA (miRNA) miR-126-3p are programmed cell-autonomously in visceral adipose tissue of adult offspring born to obese female C57BL/6J mice. The spectrum of miR-126-3p targets and thus the consequences of its dysregulation for adipocyte metabolism are unknown. Therefore, the aim of the current study was to identify novel targets of miR-126-3p in vitro and then establish the outcomes of their dysregulation on adipocyte metabolism in vivo using a well-established maternal obesity mouse model. METHODS: miR-126-3p overexpression in 3T3-L1 pre-adipocytes followed by pulsed stable isotope labelling by amino acids in culture (pSILAC) was performed to identify novel targets of the miRNA. Well-established bioinformatics algorithms and luciferase assays were then employed to confirm those that were direct targets of miR-126-3p. Selected knockdown experiments were performed in vitro to define the consequences of target dysregulation. Quantitative real-time PCR, immunoblotting, histology, euglycaemic-hyperinsulinaemic clamps and glucose tolerance tests were performed to determine the phenotypic and functional outcomes of maternal programmed miR-126-3p levels in offspring adipose tissue. RESULTS: The proteomic approach confirmed the identity of known targets of miR-126-3p (including IRS-1) and identified Lunapark, an endoplasmic reticulum (ER) protein, as a novel one. We confirmed by luciferase assay that Lunapark was a direct target of miR-126-3p. Overexpression of miR-126-3p in vitro led to a reduction in Lunapark protein levels and increased Perk (also known as Eif2ak3) mRNA levels and small interference-RNA mediated knockdown of Lunapark led to increased Xbp1, spliced Xbp1, Chop (also known as Ddit3) and Perk mRNA levels and an ER stress transcriptional response in 3T3-L1 pre-adipocytes. Consistent with the results found in vitro, increased miR-126-3p expression in adipose tissue from adult mouse offspring born to obese dams was accompanied by decreased Lunapark and IRS-1 protein levels and increased markers of ER stress. At the whole-body level the animals displayed glucose intolerance. CONCLUSIONS/INTERPRETATION: Concurrently targeting IRS-1 and Lunapark, a nutritionally programmed increase in miR-126-3p causes adipose tissue insulin resistance and an ER stress response, both of which may contribute to impaired glucose tolerance. These findings provide a novel mechanism by which obesity during pregnancy leads to increased risk of type 2 diabetes in the offspring and therefore identify miR-126-3p as a potential therapeutic target.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Estresse do Retículo Endoplasmático , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Obesidade Materna/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Células 3T3-L1 , Adipócitos/patologia , Tecido Adiposo/patologia , Animais , Glicemia/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Proteínas de Homeodomínio/genética , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Obesidade Materna/genética , Obesidade Materna/patologia , Fenótipo , Gravidez , Transdução de Sinais
6.
Gerontology ; 67(2): 233-242, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33677456

RESUMO

INTRODUCTION: Due to increasing lifespan, global aging rates are rising rapidly and age-associated diseases are increasing. To ensure that health span is concomitant with life span, a greater understanding of cellular mechanisms of aging is important. METHODS: Telomere length analysis from a wide range of tissues from weaning, young adult, and middle-aged (3, 12 and 52 week) male Wistar rats were conducted using Southern blotting. Telomere lengths were compared between tissues and ages using regression models based on the ratios of longest-to-shortest telomere fragments. RESULTS: Robust linear age-dependent telomere attrition was observed in the liver; 3 versus 12 weeks, 3 versus 52 weeks (p < 0.01), 12 versus 52 weeks (p < 0.05) and the heart; 3 versus 12 weeks (p < 0.05) and 3 versus 52 weeks (p < 0.001). More subtle shortening was observed in aorta and epididymal fat; 3 and 12 versus 52 weeks (p < 0.001) and in skeletal muscle; 3 versus 52 weeks (p < 0.05), 12 versus 52 weeks (p < 0.01). Young thymus telomeres increased in length (3 vs. 12 weeks) and then shortened between 12 and 52 weeks (p < 0.001). We also reported disparity in telomere shortening within tissues: telomeres in aging brain cortex significantly shortened; 3 versus 52 weeks (p < 0.05), 12 versus 52 weeks (p < 0.01). This was not seen in the hypothalamic region. A robust stepwise shortening was observed in the renal cortex; 3 versus 12 weeks, 12 versus 52 weeks (p < 0.05), and 3 versus 52 weeks (p < 0.001), which was not as apparent in the renal medulla; 3 versus 12 weeks (p < 0.01) and 3 versus 52 weeks (p < 0.01). The vastus lateralis skeletal muscle demonstrated the shortest telomere length at weaning and underwent robust age-associated attrition; 3 versus 52 weeks (p < 0.05), 12 versus 52 weeks (p < 0.01). We demonstrated that specific tissues exhibit unique telomere attrition profiles which may partially explain why certain diseases are more prevalent in aged individuals. DISCUSSION/CONCLUSION: We show wide variations between tissues in vulnerability to the aging process. In the future, this may help target potential interventions to improve health span.


Assuntos
Encurtamento do Telômero , Telômero , Envelhecimento/genética , Animais , Longevidade , Masculino , Ratos , Ratos Wistar , Telômero/genética
7.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299070

RESUMO

The aim of the current study was to test the hypothesis that maternal lipid metabolism was modulated during normal pregnancy and that these modulations are altered in gestational diabetes mellitus (GDM). We tested this hypothesis using an established mouse model of diet-induced obesity with pregnancy-associated loss of glucose tolerance and a novel lipid analysis tool, Lipid Traffic Analysis, that uses the temporal distribution of lipids to identify differences in the control of lipid metabolism through a time course. Our results suggest that the start of pregnancy is associated with several changes in lipid metabolism, including fewer variables associated with de novo lipogenesis and fewer PUFA-containing lipids in the circulation. Several of the changes in lipid metabolism in healthy pregnancies were less apparent or occurred later in dams who developed GDM. Some changes in maternal lipid metabolism in the obese-GDM group were so late as to only occur as the control dams' systems began to switch back towards the non-pregnant state. These results demonstrate that lipid metabolism is modulated in healthy pregnancy and the timing of these changes is altered in GDM pregnancies. These findings raise important questions about how lipid metabolism contributes to changes in metabolism during healthy pregnancies. Furthermore, as alterations in the lipidome are present before the loss of glucose tolerance, they could contribute to the development of GDM mechanistically.


Assuntos
Diabetes Gestacional/patologia , Metabolismo dos Lipídeos , Lipidômica/métodos , Lipídeos/análise , Obesidade/fisiopatologia , Animais , Glicemia/análise , Diabetes Gestacional/etiologia , Diabetes Gestacional/metabolismo , Feminino , Teste de Tolerância a Glucose , Camundongos , Gravidez
8.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360870

RESUMO

BACKGROUND: Metformin is commonly used to treat gestational diabetes mellitus. This study investigated the effect of maternal metformin intervention during obese glucose-intolerant pregnancy on the gonadal white adipose tissue (WAT) of 8-week-old male and female mouse offspring. METHODS: C57BL/6J female mice were provided with a control (Con) or obesogenic diet (Ob) to induce pre-conception obesity. Half the obese dams were treated orally with 300 mg/kg/d of metformin (Ob-Met) during pregnancy. Gonadal WAT depots from 8-week-old offspring were investigated for adipocyte size, macrophage infiltration and mRNA expression of pro-inflammatory genes using RT-PCR. RESULTS: Gestational metformin attenuated the adiposity in obese dams and increased the gestation length without correcting the offspring in utero growth restriction and catch-up growth caused by maternal obesity. Despite similar body weight, the Ob and Ob-Met offspring of both sexes showed adipocyte hypertrophy in young adulthood. Male Ob-Met offspring had increased WAT depot weight (p < 0.05), exaggerated adipocyte hyperplasia (p < 0.05 vs. Con and Ob offspring), increased macrophage infiltration measured via histology (p < 0.05) and the mRNA expression of F4/80 (p < 0.05). These changes were not observed in female Ob-Met offspring. CONCLUSIONS: Maternal metformin intervention during obese pregnancy causes excessive adiposity, adipocyte hyperplasia and WAT inflammation in male offspring, highlighting sex-specific effects of prenatal metformin exposure on offspring WAT.


Assuntos
Animais Recém-Nascidos/metabolismo , Diabetes Gestacional , Metformina/farmacologia , Obesidade Materna , Efeitos Tardios da Exposição Pré-Natal , Adiposidade , Animais , Diabetes Gestacional/tratamento farmacológico , Diabetes Gestacional/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade Materna/tratamento farmacológico , Obesidade Materna/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Fatores Sexuais
9.
Diabetologia ; 63(2): 324-337, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31773193

RESUMO

AIMS/HYPOTHESIS: Obesity during pregnancy increases offspring type 2 diabetes risk. Given that nearly half of women of child-bearing age in many populations are currently overweight/obese, it is key that we improve our understanding of the impact of the in utero/early life environment on offspring islet function. Whilst a number of experimental studies have examined the effect of maternal obesity on offspring islet architecture and/or function, it has not previously been delineated whether these changes are independent of other confounding risk factors such as obesity, postnatal high-fat-feeding and ageing. Thus, we aimed to study the impact of exposure to maternal obesity on offspring islets in young, glucose-tolerant male and female offspring. METHODS: Female C57BL/6J mice were fed ad libitum either chow or obesogenic diet prior to and throughout pregnancy and lactation. Offspring were weaned onto a chow diet and remained on this diet until the end of the study. An IPGTT was performed on male and female offspring at 7 weeks of age. At 8 weeks of age, pancreatic islets were isolated from offspring for measurement of insulin secretion and content, mitochondrial respiration, ATP content, reactive oxygen species levels, beta and alpha cell mass, granule and mitochondrial density (by transmission electron microscopy), and mRNA and protein expression by real-time RT-PCR and Western blotting, respectively. RESULTS: Glucose tolerance was similar irrespective of maternal diet and offspring sex. However, blood glucose was lower (p < 0.001) and plasma insulin higher (p < 0.05) in female offspring of obese dams 15 min after glucose administration. This was associated with higher glucose- (p < 0.01) and leucine/glutamine-stimulated (p < 0.05) insulin secretion in these offspring. Furthermore, there was increased mitochondrial respiration (p < 0.01) and density (p < 0.05) in female offspring of obese dams compared with same-sex controls. Expression of mitochondrial and nuclear-encoded components of the electron transport chain, L-type Ca2+ channel subtypes that play a key role in stimulus-secretion coupling [Cacna1d (p < 0.05)], and oestrogen receptor α (p < 0.05) was also increased in islets from these female offspring of obese dams. Moreover, cleaved caspase-3 expression and BAX:Bcl-2 were decreased (p < 0.05) reflecting reduced susceptibility to apoptosis. In contrast, in male offspring, glucose and leucine/glutamine-stimulated insulin secretion was comparable between treatment groups. There was, however, compromised mitochondrial respiration characterised by decreased ATP synthesis-driven respiration (p < 0.05) and increased uncoupled respiration (p < 0.01), reduced docked insulin granules (p < 0.001), decreased Cacna1c (p < 0.001) and Cacna1d (p < 0.001) and increased cleaved caspase-3 expression (p < 0.05). CONCLUSIONS/INTERPRETATION: Maternal obesity programs sex differences in offspring islet function. Islets of female but not male offspring appear to be primed to cope with a nutritionally-rich postnatal environment, which may reflect differences in future type 2 diabetes risk.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Obesidade Materna/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/fisiologia , Western Blotting , DNA Mitocondrial/metabolismo , Feminino , Imunofluorescência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Consumo de Oxigênio/fisiologia , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Caracteres Sexuais
10.
Int J Obes (Lond) ; 44(5): 1087-1096, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32203108

RESUMO

BACKGROUND: In utero exposure to obesity is consistently associated with increased risk of metabolic disease, obesity and cardiovascular dysfunction in later life despite the divergence of birth weight outcomes. The placenta plays a critical role in offspring development and long-term health, as it mediates the crosstalk between the maternal and fetal environments. However, its phenotypic and molecular modifications in the context of maternal obesity associated with fetal growth restriction (FGR) remain poorly understood. METHODS: Using a mouse model of maternal diet-induced obesity, we investigated changes in the placental transcriptome through RNA sequencing (RNA-seq) and Ingenuity Pathway Analysis (IPA) at embryonic day (E) 19. The most differentially expressed genes (FDR < 0.05) were validated by Quantitative real-time PCR (qPCR) in male and female placentae at E19. The expression of these targets and related genes was also determined by qPCR at E13 to examine whether the observed alterations had an earlier onset at mid-gestation. Structural analyses were performed using immunofluorescent staining against Ki67 and CD31 to investigate phenotypic outcomes at both timepoints. RESULTS: RNA-seq and IPA analyses revealed differential expression of transcripts and pathway interactions related to placental vascular development and tissue morphology in obese placentae at term, including downregulation of Muc15, Cnn1, and Acta2. Pdgfb, which is implicated in labyrinthine layer development, was downregulated in obese placentae at E13. This was consistent with the morphological evidence of reduced labyrinth zone (LZ) size, as well as lower fetal weight at both timepoints irrespective of offspring sex. CONCLUSIONS: Maternal obesity results in abnormal placental LZ development and impaired vascularization, which may mediate the observed FGR through reduced transfer of nutrients across the placenta.


Assuntos
Retardo do Crescimento Fetal , Obesidade Materna , Placenta , Transcriptoma/genética , Animais , Modelos Animais de Doenças , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade Materna/genética , Obesidade Materna/metabolismo , Placenta/metabolismo , Placenta/patologia , Gravidez
11.
FASEB J ; 33(1): 239-253, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29975569

RESUMO

Reduced fetal nutrition and rapid postnatal growth accelerates the aging phenotype in many organ systems; however, effects on the immune system are unclear. We addressed this by studying the thymus from a rat model of developmental programming. The recuperated group was generated by in utero protein restriction, followed by cross-fostering to control-fed mothers, and were then compared with controls. Fat infiltration and adipocyte size increased with age ( P < 0.001) and in recuperated thymi ( P < 0.05). Cortex/medulla ratio decreased with age ( P < 0.001) and decreased ( P < 0.05) in 12-mo recuperated thymi. Age-associated decreases in thymic-epithelial cell ( P < 0.01) and thymocyte markers ( P < 0.01) were observed in both groups and was decreased ( P < 0.05) in recuperated thymi. These data demonstrate effects of developmental programming upon thymic involution. The recuperated group had longer thymic telomeres than controls ( P < 0.001) at 22 d and at 3 mo, which was associated with increased expression of telomere-length maintenance molecules [telomerase RNA component ( Terc; P < 0.01), P23 ( P = 0.02), and Ku70 and Ku80 ( P < 0.01)]. By 12 mo, recuperated offspring had shorter thymic telomeres than controls had ( P < 0.001) and reduced DNA damage-response markers [( DNA-PKcs, Mre11 ( P < 0.01), Xrcc4 ( P = 0.02), and γ-H2ax ( P < 0.001], suggesting failure of earlier compensatory responses. Our results suggest that low birth weight with rapid postnatal growth results in premature thymic maturation, resulting in accelerated thymic aging. This could lead to increased age-associated vulnerability to infection.-Tarry-Adkins, J. L., Aiken, C. E., Ashmore, T. J., Fernandez-Twinn, D. S., Chen, J.-H., Ozanne, S. E. A suboptimal maternal diet combined with accelerated postnatal growth results in an altered aging profile in the thymus of male rats.


Assuntos
Envelhecimento/patologia , Senescência Celular , Dieta , Desnutrição/fisiopatologia , Fenômenos Fisiológicos da Nutrição Materna , Encurtamento do Telômero , Timo/patologia , Envelhecimento/metabolismo , Animais , Biomarcadores , Dano ao DNA , Feminino , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar , Timo/metabolismo
12.
Anal Bioanal Chem ; 412(12): 2851-2862, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32144454

RESUMO

Lipidomics is of increasing interest in studies of biological systems. However, high-throughput data collection and processing remains non-trivial, making assessment of phenotypes difficult. We describe a platform for surveying the lipid fraction for a range of tissues. These techniques are demonstrated on a set of seven different tissues (serum, brain, heart, kidney, adipose, liver, and vastus lateralis muscle) from post-weaning mouse dams that were either obese (> 12 g fat mass) or lean (<5 g fat mass). This showed that the lipid metabolism in some tissues is affected more by obesity than others. Analysis of human serum (healthy non-pregnant women and pregnant women at 28 weeks' gestation) showed that the abundance of several phospholipids differed between groups. Human placenta from mothers with high and low BMI showed that lean placentae contain less polyunsaturated lipid. This platform offers a way to map lipid metabolism with immediate application in metabolic research and elsewhere. Graphical abstract.


Assuntos
Lipidômica/métodos , Lipídeos/análise , Lipídeos/farmacocinética , Obesidade/fisiopatologia , Magreza/fisiopatologia , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Distribuição Tecidual
13.
Diabetologia ; 62(10): 1789-1801, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451874

RESUMO

The type 2 diabetes epidemic and one of its predisposing factors, obesity, are major influences on global health and economic burden. It is accepted that genetics and the current environment contribute to this epidemic; however, in the last two decades, both human and animal studies have consolidated considerable evidence supporting the 'developmental programming' of these conditions, specifically by the intrauterine environment. Here, we review the various in utero exposures that are linked to offspring obesity and diabetes in later life, including epidemiological insights gained from natural historical events, such as the Dutch Hunger Winter, the Chinese famine and the more recent Quebec Ice Storm. We also describe the effects of gestational exposure to endocrine disruptors, maternal infection and smoking to the fetus in relation to metabolic programming. Causal evidence from animal studies, motivated by human observations, is also discussed, as well as some of the proposed underlying molecular mechanisms for developmental programming of obesity and type 2 diabetes, including epigenetics (e.g. DNA methylation and histone modifications) and microRNA interactions. Finally, we examine the effects of non-pharmacological interventions, such as improving maternal dietary habits and/or increasing physical activity, on the offspring epigenome and metabolic outcomes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Útero/metabolismo , Animais , Diabetes Mellitus Tipo 2/genética , Epigênese Genética/genética , Feminino , Humanos , Exposição Materna , Obesidade/genética , Gravidez , Efeitos Tardios da Exposição Pré-Natal
15.
Diabetologia ; 61(10): 2225-2234, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30043179

RESUMO

AIMS: Intra-uterine growth restriction (IUGR) followed by accelerated postnatal growth is associated with an increased risk of obesity and type 2 diabetes. We aimed to determine central and peripheral insulin sensitivity in mice that underwent IUGR followed by postnatal catch-up growth and investigate potential molecular mechanisms underpinning their physiology. METHODS: We used a C57BL/6J mouse model of maternal diet-induced IUGR (maternal diet, 8% protein) followed by cross-fostering to a normal nutrition dam (maternal diet, 20% protein) and litter size manipulation to cause accelerated postnatal catch-up growth. We performed intracerebroventricular insulin injection and hyperinsulinaemic-euglycaemic clamp studies to examine the effect of this early nutritional manipulation on central and peripheral insulin resistance. Furthermore, we performed quantitative real-time PCR and western blotting to examine the expression of key insulin-signalling components in discrete regions of the hypothalamus. RESULTS: IUGR followed by accelerated postnatal growth caused impaired glucose tolerance and peripheral insulin resistance. In addition, these 'recuperated' animals were resistant to the anorectic effects of central insulin administration. This central insulin resistance was associated with reduced protein levels of the p110ß subunit of phosphoinositide 3-kinase (PI3K) and increased serine phosphorylation of IRS-1 in the arcuate nucleus (ARC) of the hypothalamus. Expression of the gene encoding protein tyrosine phosphatase 1B (PTP1B; Ptpn1) was also increased specifically in this region of the hypothalamus. CONCLUSIONS/INTERPRETATION: Mice that undergo IUGR followed by catch-up growth display peripheral and central insulin resistance in adulthood. Recuperated offspring show changes in expression/phosphorylation of components of the insulin signalling pathway in the ARC. These defects may contribute to the resistance to the anorectic effects of central insulin, as well as the impaired glucose homeostasis seen in these animals.


Assuntos
Animais Recém-Nascidos , Peso Corporal , Retardo do Crescimento Fetal/fisiopatologia , Intolerância à Glucose/fisiopatologia , Resistência à Insulina , Tecido Adiposo/metabolismo , Ração Animal , Animais , Composição Corporal , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Feminino , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Transdução de Sinais , Fatores de Tempo
16.
Semin Cell Dev Biol ; 43: 85-95, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26135290

RESUMO

It is now well established that the environment to which we are exposed during fetal and neonatal life can have a long-term impact on our health. This has been termed the developmental origins of health and disease. Factors known to have such programming effects include intrauterine nutrient availability (determined by maternal nutrition and placental function), endocrine disruptors, toxins and infectious agents. Epigenetic processes have emerged as a key mechanism by which the early environment can permanently influence cell function and metabolism after multiple rounds of cell division. More recently it has been suggested that programmed effects can be observed beyond the first generation and that therefore epigenetic mechanisms could form the basis of transmission of phenotype from parent to child to grandchild and beyond. Here we review the evidence for such processes.


Assuntos
Exposição Ambiental/efeitos adversos , Epigênese Genética/genética , Padrões de Herança/genética , Divisão Celular/genética , Cromatina/genética , Metilação de DNA/genética , Feminino , Histonas/genética , Histonas/metabolismo , Humanos , Fenômenos Fisiológicos da Nutrição Materna/genética , MicroRNAs/genética , Modelos Genéticos
17.
J Physiol ; 595(14): 4875-4892, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28382681

RESUMO

KEY POINTS: In the Western world, obesogenic diets containing high fat and high sugar (HFHS) are commonly consumed during pregnancy, although their effects on the metabolism of the mother, in relation to feto-placental glucose utilization and growth, are unknown. In the present study, the consumption of an obesogenic HFHS diet compromised maternal glucose tolerance and insulin sensitivity in late pregnancy in association with dysregulated lipid and glucose handling by the dam. These maternal metabolic changes induced by HFHS feeding were related to altered feto-placental glucose metabolism and growth. A HFHS diet during pregnancy therefore causes maternal metabolic dysfunction with consequences for maternal nutrient allocation for fetal growth. These findings have implications for the health of women and their infants, who consume obesogenic diets during pregnancy. ABSTRACT: In the Western world, obesogenic diets containing high fat and high sugar (HFHS) are commonly consumed during pregnancy. However, the impacts of a HFHS diet during pregnancy on maternal insulin sensitivity and signalling in relation to feto-placental growth and glucose utilization are unknown. The present study examined the effects of a HFHS diet during mouse pregnancy on maternal glucose tolerance and insulin resistance, as well as, on feto-placental glucose metabolism. Female mice were fed a control or HFHS diet from day (D) 1 of pregnancy (term = D20.5). At D16 or D19, dams were assessed for body composition, metabolite and hormone concentrations, tissue abundance of growth and metabolic signalling pathways, glucose tolerance and utilization and insulin sensitivity. HFHS feeding perturbed maternal insulin sensitivity in late pregnancy; hepatic insulin sensitivity was higher, whereas sensitivity of the skeletal muscle and white adipose tissue was lower in HFHS than control dams. These changes were accompanied by increased adiposity and reduced glucose production and glucose tolerance of HFHS dams. The HFHS diet also disturbed the hormone and metabolite milieu and altered expression of growth and metabolic signalling pathways in maternal tissues. Furthermore, HFHS feeding was associated with impaired feto-placental glucose metabolism and growth. A HFHS diet during pregnancy therefore causes maternal metabolic dysfunction with consequences for maternal nutrient allocation for fetal growth. These findings have implications for the health of women and their infants, who consume HFHS diets during pregnancy.


Assuntos
Dieta Ocidental , Feto/metabolismo , Glucose/metabolismo , Obesidade/metabolismo , Placenta/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Glicemia/análise , Feminino , Desenvolvimento Fetal , Teste de Tolerância a Glucose , Insulina , Resistência à Insulina , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Mães , Músculo Esquelético/metabolismo , Gravidez
18.
Diabetologia ; 59(6): 1266-75, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26965244

RESUMO

AIMS/HYPOTHESIS: Individuals with a low birthweight have an increased risk of developing type 2 diabetes mellitus in adulthood. This is associated with peripheral insulin resistance. Here, we aimed to determine whether changes in insulin signalling proteins in white adipose tissue (WAT) can be detected prior to the onset of impaired glucose tolerance, determine whether these changes are cell-autonomous and identify the underlying mechanisms involved. METHODS: Fourteen-month-old male rat offspring born to dams fed a standard protein (20%) diet or a low (8%) protein diet throughout gestation and lactation were studied. Fat distribution and adipocyte size were determined. Protein content and mRNA expression of key insulin signalling molecules were analysed in epididymal WAT and in pre-adipocytes that had undergone in vitro differentiation. RESULTS: The offspring of low protein fed dams (LP offspring) had reduced visceral WAT mass, altered fat distribution and a higher percentage of small adipocytes in epididymal WAT. This was associated with reduced levels of IRS1, PI3K p110ß, Akt1 and PKCζ proteins and of phospho-Akt Ser473. Corresponding mRNA transcript levels were unchanged. Similarly, in vitro differentiated adipocytes from LP offspring showed reduced protein levels of IRß, IRS1, PI3K p85α and p110ß subunits, and Akt1. Levels of Akt Ser473 and IRS1 Tyr612 phosphorylation were reduced, while IRS1 Ser307 phosphorylation was increased. CONCLUSIONS/INTERPRETATION: Maternal protein restriction during gestation and lactation changes the distribution and morphology of WAT and reduces the levels of key insulin signalling proteins in the male offspring. This phenotype is retained in in vitro differentiated adipocytes, suggesting that programming occurs via cell-autonomous mechanism(s).


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo/citologia , Transdução de Sinais/fisiologia , Animais , Tamanho Celular , Células Cultivadas , Dieta com Restrição de Proteínas , Feminino , Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , MicroRNAs/genética , Gravidez , Ratos
19.
Diabetologia ; 58(2): 363-73, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25403480

RESUMO

AIMS/HYPOTHESIS: We aimed to identify microRNAs (miRNAs) associated with type 2 diabetes and risk of developing the disease in skeletal muscle biopsies from phenotypically well-characterised twins. METHODS: We measured muscle miRNA levels in monozygotic (MZ) twins discordant for type 2 diabetes using arrays. Further investigations of selected miRNAs included target prediction, pathway analysis, silencing in cells and association analyses in a separate cohort of 164 non-diabetic MZ and dizygotic twins. The effects of elevated glucose and insulin levels on miRNA expression were examined, and the effect of low birthweight (LBW) was studied in rats. RESULTS: We identified 20 miRNAs that were downregulated in MZ twins with diabetes compared with their non-diabetic co-twins. Differences for members of the miR-15 family (miR-15b and miR-16) were the most statistically significant, and these miRNAs were predicted to influence insulin signalling. Indeed, miR-15b and miR-16 levels were associated with levels of key insulin signalling proteins, miR-15b was associated with the insulin receptor in non-diabetic twins and knockdown of miR-15b/miR-16 in myocytes changed the levels of insulin signalling proteins. LBW in twins and undernutrition during pregnancy in rats were, in contrast to overt type 2 diabetes, associated with increased expression of miR-15b and/or miR-16. Elevated glucose and insulin suppressed miR-16 expression in vitro. CONCLUSIONS: Type 2 diabetes is associated with non-genetic downregulation of several miRNAs in skeletal muscle including miR-15b and miR-16, potentially targeting insulin signalling. The paradoxical findings in twins with overt diabetes and twins at increased risk of the disease underscore the complexity of the regulation of muscle insulin signalling in glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Idoso , Análise de Variância , Dinamarca , Regulação para Baixo , Feminino , Teste de Tolerância a Glucose , Humanos , Masculino , Pessoa de Meia-Idade , Transdução de Sinais , Gêmeos Monozigóticos
20.
FASEB J ; 28(12): 5398-405, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25172893

RESUMO

Low birth weight and rapid postnatal growth increases risk of cardiovascular-disease (CVD); however, underlying mechanisms are poorly understood. Previously, we demonstrated that rats exposed to a low-protein diet in utero that underwent postnatal catch-up growth (recuperated) have a programmed deficit in cardiac coenzyme Q (CoQ) that was associated with accelerated cardiac aging. It is unknown whether this deficit occurs in all tissues, including those that are clinically accessible. We investigated whether aortic and white blood cell (WBC) CoQ is programmed by suboptimal early nutrition and whether postweaning dietary supplementation with CoQ could prevent programmed accelerated aging. Recuperated male rats had reduced aortic CoQ [22 d (35±8.4%; P<0.05); 12 m (53±8.8%; P<0.05)], accelerated aortic telomere shortening (P<0.01), increased DNA damage (79±13% increase in nei-endonucleaseVIII-like-1), increased oxidative stress (458±67% increase in NAPDH-oxidase-4; P<0.001), and decreased mitochondrial complex II-III activity (P<0.05). Postweaning dietary supplementation with CoQ prevented these detrimental programming effects. Recuperated WBCs also had reduced CoQ (74±5.8%; P<0.05). Notably, WBC CoQ levels correlated with aortic telomere-length (P<0.0001) suggesting its potential as a diagnostic marker of vascular aging. We conclude that early intervention with CoQ in at-risk individuals may be a cost-effective and safe way of reducing the global burden of CVDs.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Suplementos Nutricionais , Ubiquinona/metabolismo , Animais , Doenças Cardiovasculares/enzimologia , Feminino , Estresse Oxidativo , Gravidez , Ratos Wistar , Telomerase/metabolismo , Ubiquinona/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA