Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Pharmacol ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812100

RESUMO

BACKGROUND: More than 80% of patients may experience acute pain after a surgical procedure, and this is often refractory to pharmacological intervention. The identification of new targets to treat postoperative pain is necessary. There is an association of polymorphisms in the Cav2.3 gene with postoperative pain and opioid consumption. Our study aimed to identify Cav2.3 as a potential target to treat postoperative pain and to reduce opioid-related side effects. EXPERIMENTAL APPROACH: A plantar incision model was established in adult male and female C57BL/6 mice. Cav2.3 expression was detected by qPCR and suppressed by siRNA treatment. The antinociceptive efficacy and safety of a Cav2.3 blocker-alone or together with morphine-was also assessed after surgery. KEY RESULTS: Paw incision in female and male mice caused acute nociception and increased Cav2.3 mRNA expression in the spinal cord but not in the incised tissue. Intrathecal treatment with siRNA against Cav2.3, but not with a scrambled siRNA, prevented the development of surgery-induced nociception in both male and female mice, with female mice experiencing long-lasting effects. High doses of i.t. SNX-482, a Cav2.3 channel blocker, or morphine injected alone, reversed postoperative nociception but also induced side effects. A combination of lower doses of morphine and SNX-482 mediated a long-lasting reversal of postsurgical pain in female and male mice. CONCLUSION: Our results demonstrate that Cav2.3 has a pronociceptive role in the induction of postoperative pain, indicating that it is a potential target for the development of therapeutic approaches for the treatment of postoperative pain.

2.
Front Pharmacol ; 13: 911105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784726

RESUMO

Migraine represents one of the major causes of disability worldwide and is more prevalent in women; it is also related to anxiety symptoms. Stress, such as sound stress, is a frequently reported trigger in migraine patients, but the underlying mechanisms are not fully understood. However, it is known that patients with migraine have higher levels of plasma inflammatory cytokines and calcitonin gene-related peptide (CGRP). Stress mediated by unpredictable sound is already used as a model of painful sensitization, but migraine-like behaviors and sexual dimorphism have not yet been evaluated. This study characterized nociception and anxiety-related symptoms after the induction of sound stress in mice. C57BL/6 mice (20-30 g) were exposed to unpredictable sound stress for 3 days, nonconsecutive days. We observed enhanced plasma corticosterone levels on day 1 after stress induction. First, 7 days after the last stress session, mice developed hind paw and periorbital mechanical allodynia, grimacing pain behavior, anxiety-like symptoms, and reduced exploratory behavior. The nociceptive and behavioral alterations detected in this model were mostly shown in female stressed mice at day 7 post-stress. In addition, on day 7 post-stress nociception, these behaviors were consistently abolished by the CGRP receptor antagonist olcegepant (BIBN4096BS, 100 mg/kg by intraperitoneal route) in female and male stressed mice. We also demonstrated an increase in interleukine-6 (IL-6), tumor necrosis factor (TNF-α), and CGRP levels in stressed mice plasma, with female mice showing higher levels compared to male mice. This stress paradigm allows further preclinical investigation of mechanisms contributing to migraine-inducing pain.

3.
J Pain ; 22(8): 996-1013, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33774154

RESUMO

Chemotherapy-Induced Peripheral Neuropathy (CIPN) is a common, difficult-to-treat, and dose-limiting side effect associated with Oxaliplatin (OXA) treatment. In this study, we evaluated the effect of three antioxidants - namely N-acetylcysteine, α-lipoic acid and vitamin E - upon nociceptive parameters and antitumor efficacy of OXA in a tumor-bearing Swiss mice model. Oral treatment with antioxidants inhibited both mechanical and cold allodynia when concomitantly administrated with OXA (preventive protocol), as well as in animals with previously established CIPN (therapeutic protocol). OXA increased Reactive Oxygen Species (ROS) production and lipoperoxidation, and augmented the content of pro-inflammatory cytokines (IL-1ß and TNF-α) and expression of the astrocytic marker Gfap mRNA in the spinal cord. Antioxidants decreased ROS production and lipoperoxidation, and abolished neuroinflammation in OXA-treated animals. Toll-like receptor 4 (Tlr4) and inflammasome enzyme caspase-1/11 knockout mice treated with OXA showed reduced levels of pro-inflammatory cytokines (but not oxidative stress) in the spinal cord, which were associated with resistance to OXA-induced mechanical allodynia. Lastly, antioxidants affected neither antitumor activity nor hematological toxicity of OXA in vivo. The herein presented results are provocative for further evaluation of antioxidants in clinical management of chemotherapy-induced peripheral neuropathy. PERSPECTIVE: This study reports preventive and therapeutic efficacy of orally administrated antioxidants (N-acetylcysteine, α-lipoic-acid and Vitamin-E) in alleviating oxaliplatin-induced peripheral neuropathy in tumor-bearing mice. Antioxidants' anti-nociceptive effects are associated with inhibition of ROS-dependent neuroinflammation, and occur at no detriment of OXA antitumor activity, therefore indicating a translational potential of these compounds.


Assuntos
Antineoplásicos/efeitos adversos , Antioxidantes/farmacologia , Hiperalgesia , Neoplasias/tratamento farmacológico , Doenças Neuroinflamatórias , Oxaliplatina/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico , Medula Espinal , Animais , Modelos Animais de Doenças , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/prevenção & controle , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Medula Espinal/metabolismo , Receptor 4 Toll-Like
4.
Exp Neurol ; 328: 113241, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32045597

RESUMO

Central neuropathic pain is the main symptom caused by spinal cord lesion in relapsing-remitting multiple sclerosis (RRMS), but its management is still not effective. The transient receptor potential ankyrin 1 (TRPA1) is a pain detecting ion channel involved in neuropathic pain development. Thus, the aim of our study was to evaluate the role of TRPA1 in central neuropathic nociception induced by relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE) mouse model. In this model, we observed the development of similar clinical conditions of RRMS in C57BL/6 female mice through RR-EAE using MOG35-55 antigen and Quil A adjuvant. At the thirty-fifth day post-induction, C57BL/6 female mice demonstrated alteration in the RR-EAE score without motor impairment, mechanical and cold allodynia. Also, significative changes in demyelinating (Mog and olig-1) and neuroinflammatory (Iba1, Gfap and Tnfa) markers were observed, but this model did not alter Trpa1 RNA expression levels in the spinal cord. The hydrogen peroxide and 4-hydroxynonenal levels (TRPA1 agonists) were increased in RR-EAE induced mice, as well as the NADPH oxidase activity. The intragastric treatment of RR-EAE induced mice with TRPA1 antagonists (HC-030031 and A-967079) and antioxidant (α-lipoic acid and apocynin) caused an antiallodynic effect. Moreover, the intrathecal administration of TRPA1 antisense oligonucleotide, HC-030031, α-lipoic acid, and apocynin transiently attenuated mechanical and cold allodynia. Thus, TRPA1 plays a key role in the induction of neuropathic pain in this model of RR-EAE and can be a possible target for investigating the development of pain in RRMS patients.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Nociceptividade/fisiologia , Canal de Cátion TRPA1/metabolismo , Animais , Encefalomielite Autoimune Experimental/complicações , Feminino , Hiperalgesia/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA