Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 74(5): 1564-1578, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36111947

RESUMO

Potato spindle tuber viroid (PSTVd) is a plant pathogen naturally infecting economically important crops such as tomato (Solanum lycopersicum). Here, we aimed to engineer tomato plants highly resistant to PSTVd and developed several S. lycopersicum lines expressing an artificial microRNA (amiRNA) against PSTVd (amiR-PSTVd). Infectivity assays revealed that amiR-PSTVd-expressing lines were not resistant but instead hypersusceptible to the viroid. A combination of phenotypic, molecular, and metabolic analyses of amiRNA-expressing lines non-inoculated with the viroid revealed that amiR-PSTVd was accidentally silencing the tomato STEROL GLYCOSYLTRANSFERASE 1 (SlSGT1) gene, which caused late developmental and reproductive defects such as leaf epinasty, dwarfism, or reduced fruit size. Importantly, two independent transgenic tomato lines each expressing a different amiRNA specifically designed to target SlSGT1 were also hypersusceptible to PSTVd, thus demonstrating that down-regulation of SlSGT1 was responsible for the viroid-hypersusceptibility phenotype. Our results highlight the role of sterol glycosyltransferases in proper plant development and indicate that the imbalance of sterol glycosylation levels favors viroid infection, most likely by facilitating viroid movement.


Assuntos
MicroRNAs , Solanum lycopersicum , Solanum tuberosum , Viroides , Viroides/genética , Solanum lycopersicum/genética , Regulação para Baixo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , MicroRNAs/genética , Doenças das Plantas/genética , Solanum tuberosum/genética , RNA Viral/genética
2.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36260504

RESUMO

In the framework of the research project called fitomatics, we have isolated and characterized a bacterial plant-endophyte from the rhizomes of Iris germanica, hereafter referred to as strain FIT81T. The bacterium is Gram negative, rod-shaped with lophotrichous flagella, and catalase- and oxidase-positive. The optimal growth temperature of strain FIT81T is 28 °C, although it can grow within a temperature range of 4-32 °C. The pH growth tolerance ranges between pH 5 and 10, and it tolerates 4% (w/v) NaCl. A 16S rRNA phylogenetic analysis positioned strain FIT81T within the genus Pseudomonas, and multilocus sequence analysis revealed that Pseudomonas gozinkensis IzPS32dT, Pseudomonas glycinae MS586T, Pseudomonas allokribbensis IzPS23T, 'Pseudomonas kribbensis' 46-2 and Pseudomonas koreensis PS9-14T are the top five most closely related species, which were selected for further genome-to-genome comparisons, as well as for physiological and chemotaxonomic characterization. The genome size of strain FIT81T is 6 492 796 base-pairs long, with 60.6 mol% of G+C content. Average nucleotide identity and digital DNA-DNA hybridization analyses yielded values of 93.6 and 56.1%, respectively, when the FIT81T genome was compared to that of the closest type strain P. gozinkensis IzPS32dT. Taken together, the obtained genomic, physiologic and chemotaxonomic data indicate that strain FIT81T is different from its closest relative species, which lead us to suggest that it is a novel species to be included in the list of type strains with the name Pseudomonas fitomaticsae sp. nov. (FIT81T=CECT 30374T=DSM 112699T).


Assuntos
Cloreto de Sódio , Técnicas de Tipagem Bacteriana , Composição de Bases , Catalase/genética , DNA Bacteriano/genética , Ácidos Graxos/química , Nucleotídeos , Filogenia , Pseudomonas , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha
3.
Plant Cell Rep ; 41(2): 281-291, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34665312

RESUMO

The genome of most plant viruses consists of a single positive-strand of RNA (+ ssRNA). Successful replication of these viruses is fully dependent on the endomembrane system of the infected cells, which experiences a massive proliferation and a profound reshaping that enables assembly of the macromolecular complexes where virus genome replication occurs. Assembly of these viral replicase complexes (VRCs) requires a highly orchestrated interplay of multiple virus and co-opted host cell factors to create an optimal microenvironment for efficient assembly and functioning of the virus genome replication machinery. It is now widely accepted that VRC formation involves the recruitment of high levels of sterols, but the specific role of these essential components of cell membranes and the precise molecular mechanisms underlying sterol enrichment at VRCs are still poorly known. In this review, we intend to summarize the most relevant knowledge on the role of sterols in ( +)ssRNA virus replication and discuss the potential of manipulating the plant sterol pathway to help plants fight these infectious agents.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Fitosteróis/metabolismo , Vírus de Plantas/fisiologia , Plantas/metabolismo , Plantas/virologia , Membrana Celular/metabolismo , Membrana Celular/virologia , Genoma Viral , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Vírus de RNA/patogenicidade , Vírus de RNA/fisiologia , Replicação Viral
4.
BMC Plant Biol ; 21(1): 141, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731007

RESUMO

BACKGROUND: Sterols are structural and functional components of eukaryotic cell membranes. Plants produce a complex mixture of sterols, among which ß-sitosterol, stigmasterol, campesterol, and cholesterol in some Solanaceae, are the most abundant species. Many reports have shown that the stigmasterol to ß-sitosterol ratio changes during plant development and in response to stresses, suggesting that it may play a role in the regulation of these processes. In tomato (Solanum lycopersicum), changes in the stigmasterol to ß-sitosterol ratio correlate with the induction of the only gene encoding sterol C22-desaturase (C22DES), the enzyme specifically involved in the conversion of ß-sitosterol to stigmasterol. However, despite the biological interest of this enzyme, there is still a lack of knowledge about several relevant aspects related to its structure and function. RESULTS: In this study we report the subcellular localization of tomato C22DES in the endoplasmic reticulum (ER) based on confocal fluorescence microscopy and cell fractionation analyses. Modeling studies have also revealed that C22DES consists of two well-differentiated domains: a single N-terminal transmembrane-helix domain (TMH) anchored in the ER-membrane and a globular (or catalytic) domain that is oriented towards the cytosol. Although TMH is sufficient for the targeting and retention of the enzyme in the ER, the globular domain may also interact and be retained in the ER in the absence of the N-terminal transmembrane domain. The observation that a truncated version of C22DES lacking the TMH is enzymatically inactive revealed that the N-terminal membrane domain is essential for enzyme activity. The in silico analysis of the TMH region of plant C22DES revealed several structural features that could be involved in substrate recognition and binding. CONCLUSIONS: Overall, this study contributes to expand the current knowledge on the structure and function of plant C22DES and to unveil novel aspects related to plant sterol metabolism.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Solanum lycopersicum/enzimologia , Motivos de Aminoácidos , Retículo Endoplasmático/enzimologia , Modelos Moleculares , Fitosteróis/metabolismo , Domínios Proteicos , Estigmasterol/metabolismo , Relação Estrutura-Atividade
5.
J Exp Bot ; 71(1): 258-271, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504760

RESUMO

Pelargonium graveolens is a wild predecessor to rose-scented geranium hybrids prized for their essential oils used as fragrances and flavorings. However, little is known about their biosynthesis. Here we present metabolic evidence that at least two distinct monoterpene biosynthetic pathways contribute to their volatile profiles, namely, cyclic p-menthanes such as (-)-isomenthone and acyclic monoterpene alcohols such as geraniol and (-)-citronellol and their derivatives (referred to here as citronelloid monoterpenes). We established their common origin via the 2C-methyl-d-erythritol-4-phosphate pathway but found no indication these pathways share common intermediates beyond geranyl diphosphate. Untargeted volatile profiling of 22 seed-grown P. graveolens lines demonstrated distinct chemotypes that preferentially accumulate (-)-isomenthone, geraniol, or (-)-citronellol along with approximately 85 minor volatile products. Whole plant 13CO2 isotopic labeling performed under physiological conditions permitted us to measure the in vivo rates of monoterpenoid accumulation in these lines and quantify differences in metabolic modes between chemotypes. We further determined that p-menthane monoterpenoids in Pelargonium are likely synthesized from (+)-limonene via (+)-piperitone rather than (+)-pulegone. Exploitation of this natural population enabled a detailed dissection of the relative rates of competing p-menthane and citronelloid pathways in this species, providing real time rates of monoterpene accumulation in glandular trichomes.


Assuntos
Monoterpenos/metabolismo , Pelargonium/metabolismo , Redes e Vias Metabólicas
6.
Plant Physiol ; 172(1): 93-117, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27382138

RESUMO

Farnesyl diphosphate synthase (FPS) catalyzes the synthesis of farnesyl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. Arabidopsis (Arabidopsis thaliana) contains two genes (FPS1 and FPS2) encoding FPS. Single fps1 and fps2 knockout mutants are phenotypically indistinguishable from wild-type plants, while fps1/fps2 double mutants are embryo lethal. To assess the effect of FPS down-regulation at postembryonic developmental stages, we generated Arabidopsis conditional knockdown mutants expressing artificial microRNAs devised to simultaneously silence both FPS genes. Induction of silencing from germination rapidly caused chlorosis and a strong developmental phenotype that led to seedling lethality. However, silencing of FPS after seed germination resulted in a slight developmental delay only, although leaves and cotyledons continued to show chlorosis and altered chloroplasts. Metabolomic analyses also revealed drastic changes in the profile of sterols, ubiquinones, and plastidial isoprenoids. RNA sequencing and reverse transcription-quantitative polymerase chain reaction transcriptomic analysis showed that a reduction in FPS activity levels triggers the misregulation of genes involved in biotic and abiotic stress responses, the most prominent one being the rapid induction of a set of genes related to the jasmonic acid pathway. Down-regulation of FPS also triggered an iron-deficiency transcriptional response that is consistent with the iron-deficient phenotype observed in FPS-silenced plants. The specific inhibition of the sterol biosynthesis pathway by chemical and genetic blockage mimicked these transcriptional responses, indicating that sterol depletion is the primary cause of the observed alterations. Our results highlight the importance of sterol homeostasis for normal chloroplast development and function and reveal important clues about how isoprenoid and sterol metabolism is integrated within plant physiology and development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Ciclopentanos/metabolismo , Geraniltranstransferase/metabolismo , Ferro/metabolismo , Oxilipinas/metabolismo , Esteróis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/ultraestrutura , Western Blotting , Cloroplastos/genética , Ciclopentanos/farmacologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Inativação Gênica , Geraniltranstransferase/genética , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Mutação , Oxilipinas/farmacologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Plant Cell ; 25(2): 728-43, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23404890

RESUMO

The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme catalyzes the major rate-limiting step of the mevalonic acid (MVA) pathway from which sterols and other isoprenoids are synthesized. In contrast with our extensive knowledge of the regulation of HMGR in yeast and animals, little is known about this process in plants. To identify regulatory components of the MVA pathway in plants, we performed a genetic screen for second-site suppressor mutations of the Arabidopsis thaliana highly drought-sensitive drought hypersensitive2 (dry2) mutant that shows decreased squalene epoxidase activity. We show that mutations in SUPPRESSOR OF DRY2 DEFECTS1 (SUD1) gene recover most developmental defects in dry2 through changes in HMGR activity. SUD1 encodes a putative E3 ubiquitin ligase that shows sequence and structural similarity to yeast Degradation of α factor (Doα10) and human TEB4, components of the endoplasmic reticulum-associated degradation C (ERAD-C) pathway. While in yeast and animals, the alternative ERAD-L/ERAD-M pathway regulates HMGR activity by controlling protein stability, SUD1 regulates HMGR activity without apparent changes in protein content. These results highlight similarities, as well as important mechanistic differences, among the components involved in HMGR regulation in plants, yeast, and animals.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hidroximetilglutaril-CoA Redutases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Humanos , Proteínas de Membrana/genética , Ácido Mevalônico/metabolismo , Mutação , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Esteróis/metabolismo , Ubiquitina-Proteína Ligases/genética
9.
Adv Exp Med Biol ; 896: 263-85, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27165331

RESUMO

The first transgenes were introduced in a plant genome more than 30 years ago. Since then, the capabilities of the plant scientific community to engineer the genome of plants have progressed at an unparalleled speed. Plant genetic engineering has become a central technology that has dramatically incremented our basic knowledge of plant biology and has enabled the translation of this knowledge into a number of increasingly complex and sophisticated biotechnological applications, which in most cases rely on the simultaneous co-expression of multiple recombinant proteins from different origins. To meet the new challenges of modern plant biotechnology, the plant scientific community has developed a vast arsenal of innovative molecular tools and genome engineering strategies. In this chapter we review a variety of tools, technologies, and strategies developed to transfer and simultaneously co-express multiple transgenes and proteins in a plant host. Their potential advantages, disadvantages, and future prospects are also discussed.


Assuntos
Proteínas de Plantas/biossíntese , Plantas Geneticamente Modificadas/metabolismo , Engenharia de Proteínas/métodos , Proteínas Recombinantes/biossíntese , Animais , Regulação da Expressão Gênica de Plantas , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Complexos Multiproteicos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relação Estrutura-Atividade , Transcrição Gênica
10.
Metab Eng ; 23: 145-53, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24704560

RESUMO

Parthenolide, the main bioactive compound of the medicinal plant feverfew (Tanacetum parthenium), is a promising anti-cancer drug. However, the biosynthetic pathway of parthenolide has not been elucidated yet. Here we report on the isolation and characterization of all the genes from feverfew that are required for the biosynthesis of parthenolide, using a combination of 454 sequencing of a feverfew glandular trichome cDNA library, co-expression analysis and metabolomics. When parthenolide biosynthesis was reconstituted by transient co-expression of all pathway genes in Nicotiana benthamiana, up to 1.4µgg(-1) parthenolide was produced, mostly present as cysteine and glutathione conjugates. These relatively polar conjugates were highly active against colon cancer cells, with only slightly lower activity than free parthenolide. In addition to these biosynthetic genes, another gene encoding a costunolide and parthenolide 3ß-hydroxylase was identified opening up further options to improve the water solubility of parthenolide and therefore its potential as a drug.


Assuntos
Nicotiana , Plantas Geneticamente Modificadas , Sesquiterpenos/metabolismo , Metabolômica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Tanacetum parthenium/enzimologia , Tanacetum parthenium/genética , Nicotiana/genética , Nicotiana/metabolismo
11.
Plant Cell ; 23(4): 1494-511, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21478440

RESUMO

Plants synthesize a myriad of isoprenoid products that are required both for essential constitutive processes and for adaptive responses to the environment. The enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes a key regulatory step of the mevalonate pathway for isoprenoid biosynthesis and is modulated by many endogenous and external stimuli. In spite of that, no protein factor interacting with and regulating plant HMGR in vivo has been described so far. Here, we report the identification of two B'' regulatory subunits of protein phosphatase 2A (PP2A), designated B''α and B''ß, that interact with HMGR1S and HMGR1L, the major isoforms of Arabidopsis thaliana HMGR. B''α and B''ß are Ca²âº binding proteins of the EF-hand type. We show that HMGR transcript, protein, and activity levels are modulated by PP2A in Arabidopsis. When seedlings are transferred to salt-containing medium, B''α and PP2A mediate the decrease and subsequent increase of HMGR activity, which results from a steady rise of HMGR1-encoding transcript levels and an initial sharper reduction of HMGR protein level. In unchallenged plants, PP2A is a posttranslational negative regulator of HMGR activity with the participation of B''ß. Our data indicate that PP2A exerts multilevel control on HMGR through the five-member B'' protein family during normal development and in response to a variety of stress conditions.


Assuntos
Arabidopsis/enzimologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Proteína Fosfatase 2/metabolismo , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Hidroximetilglutaril-CoA Redutases/genética , Dados de Sequência Molecular , Mutação/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Ligação Proteica/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Proteína Fosfatase 2/química , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/efeitos dos fármacos , Plântula/enzimologia , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Fatores de Tempo
12.
J Crohns Colitis ; 18(1): 65-74, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-37522878

RESUMO

BACKGROUND: Both vedolizumab and ustekinumab are approved for the management of Crohn's disease [CD]. Data on which one would be the most beneficial option when anti-tumour necrosis factor [anti-TNF] agents fail are limited. AIMS: To compare the durability, effectiveness, and safety of vedolizumab and ustekinumab after anti-TNF failure or intolerance in CD. METHODS: CD patients from the ENEIDA registry who received vedolizumab or ustekinumab after anti-TNF failure or intolerance were included. Durability and effectiveness were evaluated in both the short and the long term. Effectiveness was defined according to the Harvey-Bradshaw index [HBI]. The safety profile was compared between the two treatments. The propensity score was calculated by the inverse probability weighting method to balance confounder factors. RESULTS: A total of 835 patients from 30 centres were included, 207 treated with vedolizumab and 628 with ustekinumab. Dose intensification was performed in 295 patients. Vedolizumab [vs ustekinumab] was associated with a higher risk of treatment discontinuation (hazard ratio [HR] 2.55, 95% confidence interval [CI]: 2.02-3.21), adjusted by corticosteroids at baseline [HR 1.27; 95% CI: 1.00-1.62], moderate-severe activity in HBI [HR 1.79; 95% CI: 1.20-2.48], and high levels of C-reactive protein at baseline [HR 1.06; 95% CI: 1.02-1.10]. The inverse probability weighting method confirmed these results. Clinical response, remission, and corticosteroid-free clinical remission were higher with ustekinumab than with vedolizumab. Both drugs had a low risk of adverse events with no differences between them. CONCLUSION: In CD patients who have failed anti-TNF agents, ustekinumab seems to be superior to vedolizumab in terms of durability and effectiveness in clinical practice. The safety profile is good and similar for both treatments.


Assuntos
Anticorpos Monoclonais Humanizados , Doença de Crohn , Ustekinumab , Humanos , Ustekinumab/uso terapêutico , Doença de Crohn/tratamento farmacológico , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Indução de Remissão , Fator de Necrose Tumoral alfa , Sistema de Registros , Resultado do Tratamento , Estudos Retrospectivos
13.
Metab Eng ; 15: 88-97, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23154132

RESUMO

The concentration and ratio of terpenoids in the headspace volatile blend of plants have a fundamental role in the communication of plants and insects. The sesquiterpene (E)-nerolidol is one of the important volatiles with effect on beneficial carnivores for biologic pest management in the field. To optimize de novo biosynthesis and reliable and uniform emission of (E)-nerolidol, we engineered different steps of the (E)-nerolidol biosynthesis pathway in Arabidopsis thaliana. Introduction of a mitochondrial nerolidol synthase gene mediates de novo emission of (E)-nerolidol and linalool. Co-expression of the mitochondrial FPS1 and cytosolic HMGR1 increased the number of emitting transgenic plants (incidence rate) and the emission rate of both volatiles. No association between the emission rate of transgenic volatiles and their growth inhibitory effect could be established. (E)-Nerolidol was to a large extent metabolized to non-volatile conjugates.


Assuntos
Melhoramento Genético/métodos , Lepidópteros/fisiologia , Complexos Multienzimáticos/genética , Plantas Geneticamente Modificadas/fisiologia , Plantas Geneticamente Modificadas/parasitologia , Sesquiterpenos/metabolismo , Vespas/fisiologia , Animais , Interações Hospedeiro-Parasita/fisiologia , Engenharia Metabólica/métodos
14.
Front Plant Sci ; 13: 984100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247562

RESUMO

Steryl esters (SE) are stored in cytoplasmic lipid droplets and serve as a reservoir of sterols that helps to maintain free sterols (FS) homeostasis in cell membranes throughout plant growth and development, and provides the FS needed to meet the high demand of these key plasma membrane components during rapid plant organ growth and expansion. SE are also involved in the recycling of sterols and fatty acids released from membranes during plant tissues senescence. SE are synthesized by sterol acyltransferases, which catalyze the transfer of long-chain fatty acid groups to the hydroxyl group at C3 position of FS. Depending on the donor substrate, these enzymes are called acyl-CoA:sterol acyltransferases (ASAT), when the substrate is a long-chain acyl-CoA, and phospholipid:sterol acyltransferases (PSAT), which use a phospholipid as a donor substrate. We have recently identified and preliminary characterized the tomato (Solanum lycopersicum cv. Micro-Tom) SlASAT1 and SlPSAT1 enzymes. To gain further insight into the biological role of these enzymes and SE biosynthesis in tomato, we generated and characterized CRISPR/Cas9 single knock-out mutants lacking SlPSAT1 (slpsat1) and SlASAT1 (slasat1), as well as the double mutant slpsat1 x slasat1. Analysis of FS and SE profiles in seeds and leaves of the single and double mutants revealed a strong depletion of SE in slpsat1, that was even more pronounced in the slpsat1 x slasat1 mutant, while an increase of SE levels was observed in slasat1. Moreover, SlPSAT1 and SlASAT1 inactivation affected in different ways several important cellular and physiological processes, like leaf lipid bo1dies formation, seed germination speed, leaf senescence, and the plant size. Altogether, our results indicate that SlPSAT1 has a predominant role in tomato SE biosynthesis while SlASAT1 would mainly regulate the flux of the sterol pathway. It is also worth to mention that some of the metabolic and physiological responses in the tomato mutants lacking functional SlPSAT1 or SlASAT1 are different from those previously reported in Arabidopsis, being remarkable the synergistic effect of SlASAT1 inactivation in the absence of a functional SlPSAT1 on the early germination and premature senescence phenotypes.

15.
Plant J ; 63(3): 512-25, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20497375

RESUMO

Farnesyl diphosphate (FPP) synthase (FPS) catalyses the synthesis of FPP, the major substrate used by cytosolic and mitochondrial branches of the isoprenoid pathway. Arabidopsis contains two farnesyl diphosphate synthase genes, FPS1 and FPS2, that encode isozymes FPS1L (mitochondrial), FPS1S and FPS2 (both cytosolic). Here we show that simultaneous knockout of both FPS genes is lethal for Arabidopsis, and embryo development is arrested at the pre-globular stage, demonstrating that FPP-derived isoprenoid metabolism is essential. In addition, lack of FPS enzyme activity severely impairs male genetic transmission. In contrast, no major developmental and metabolic defects were observed in fps1 and fps2 single knockout mutants, demonstrating the redundancy of the genes. The levels of sterols and ubiquinone, the major mitochondrial isoprenoid, are only slightly reduced in the single mutants. Although one functional FPS gene is sufficient to support isoprenoid biosynthesis for normal growth and development, the functions of FPS1 and FPS2 during development are not completely redundant. FPS1 activity has a predominant role during most of the plant life cycle, and FPS2 appears to have a major role in seeds and during the early stages of seedling development. Lack of FPS2 activity in seeds, but not of FPS1 activity, is associated with a marked reduction in sitosterol content and positive feedback regulation of 3-hydroxy-3-methylglutaryl CoA reductase activity that renders seeds hypersensitive to the 3-hydroxy-3-methylglutaryl CoA reductase inhibitor mevastatin.


Assuntos
Arabidopsis/enzimologia , Geraniltranstransferase/metabolismo , Isoenzimas/metabolismo , Terpenos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Brassinosteroides/metabolismo , Genes de Plantas , Geraniltranstransferase/genética , Isoenzimas/genética , Prenilação de Proteína
16.
Plant J ; 59(1): 63-76, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19309460

RESUMO

Squalene epoxidase enzymes catalyse the conversion of squalene into 2,3-oxidosqualene, the precursor of cyclic triterpenoids. Here we report that the Arabidopsis drought hypersensitive/squalene epoxidase 1-5 (dry2/sqe1-5) mutant, identified by its extreme hypersensitivity to drought stress, has altered stomatal responses and root defects because of a point mutation in the SQUALENE EPOXIDASE 1 (SQE1) gene. GC-MS analysis indicated that the dry2/sqe1-5 mutant has altered sterol composition in roots but wild-type sterol composition in shoots, indicating an essential role for SQE1 in root sterol biosynthesis. Importantly, the stomatal and root defects of the dry2/sqe1-5 mutant are associated with altered production of reactive oxygen species. As RHD2 NADPH oxidase is de-localized in dry2/sqe1-5 root hairs, we propose that sterols play an essential role in the localization of NADPH oxidases required for regulation of reactive oxygen species, stomatal responses and drought tolerance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Secas , Espécies Reativas de Oxigênio/metabolismo , Esqualeno Mono-Oxigenase/metabolismo , Esteróis/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , DNA de Plantas/genética , Desidratação , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Mutação , NADPH Oxidases/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Estômatos de Plantas/enzimologia , Estômatos de Plantas/genética , Esqualeno Mono-Oxigenase/genética , Estresse Fisiológico
17.
Phytochemistry ; 70(1): 53-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19041104

RESUMO

3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR, EC 1.1.1.34) catalyzes the major rate-limiting step in the mevalonate (MVA) pathway for isoprenoid biosynthesis. Its activity is regulated at different levels, from transcriptional to post-translational. Treatment of Arabidopsis thaliana plants with myriocin, a specific inhibitor of serine palmitoyltransferase (SPT), the first enzyme of sphingolipid biosynthesis, resulted in a concomitant reduction of both HMGR activity and the sterol content, which reveals regulatory cross-talk between these two lipid biosynthesis pathways. Myriocin-induced down-regulation of HMGR activity is exerted at the post-translational level, like the regulatory response of HMGR to enhancement or depletion of the flux through the sterol pathway.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Esfingolipídeos/biossíntese , Esteróis/biossíntese , Arabidopsis , Relação Dose-Resposta a Droga , Regulação para Baixo , Inibidores Enzimáticos/farmacologia , Ácidos Graxos Monoinsaturados/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hidroximetilglutaril-CoA Redutases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Front Plant Sci ; 10: 1162, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611892

RESUMO

Free and glycosylated sterols are both structural components of the plasma membrane that regulate their biophysical properties and consequently different plasma membrane-associated processes such as plant adaptation to stress or signaling. Several reports relate changes in glycosylated sterols levels with the plant response to abiotic stress, but the information about the role of these compounds in the response to biotic stress is scarce. In this work, we have studied the response to the necrotrophic fungus Botrytis cinerea in an Arabidopsis mutant that is severely impaired in steryl glycosides biosynthesis due to the inactivation of the two sterol glucosyltransferases (UGT80A2 and UGT80B1) reported in this plant. This mutant exhibits enhanced resistance against B. cinerea when compared to wild-type plants, which correlates with increased levels of jasmonic acid (JA) and up-regulation of two marker genes (PDF1.2 and PR4) of the ERF branch of the JA signaling pathway. Upon B. cinerea infection, the ugt80A2;B1 double mutant also accumulates higher levels of camalexin, the major Arabidopsis phytoalexin, than wild-type plants. Camalexin accumulation correlates with enhanced transcript levels of several cytochrome P450 camalexin biosynthetic genes, as well as of their transcriptional regulators WRKY33, ANAC042, and MYB51, suggesting that the Botrytis-induced accumulation of camalexin is coordinately regulated at the transcriptional level. After fungus infection, the expression of genes involved in the indole glucosinolate biosynthesis is also up-regulated at a higher degree in the ugt80A2;B1 mutant than in wild-type plants. Altogether, the results of this study show that glycosylated sterols play an important role in the regulation of Arabidopsis response to B. cinerea infection and suggest that this occurs through signaling pathways involving the canonical stress-hormone JA and the tryptophan-derived secondary metabolites camalexin and possibly also indole glucosinolates.

19.
Biochim Biophys Acta ; 1773(3): 419-26, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17198737

RESUMO

The isoprenoid pathway is responsible for the generation of a wide range of products that are crucial for cellular processes; namely, cholesterol synthesis, protein glycosylation, growth control and synthesis of several hormones. Farnesyl diphosphate synthase (FPS), a key enzyme in this pathway, is usually considered to be cytosolic/peroxisomal. However, significant enzymatic activity has also been detected in rat liver mitochondria, although none of the mammalian FPS genes characterized to date contain sequences coding for mitochondrial transit peptides. Here, we describe the genomic organization of the human FPS gene and demonstrate that one of the two mRNAs expressed from this gene encodes an isoform with a 66 amino acid N-terminal extension containing a peptide that targets it to mitochondria. Previous studies suggested that the N-terminal extension of FPS in the plant Arabidopsis thaliana contains a mitochondrial targeting sequence. In this study, database analysis reveals that this is also the case in a number of mammals and insects. Finally, we provide functional proofs that the N-terminal sequence of Drosophila melanogaster FPS targets the protein to mitochondria. Taken together, these data suggest that mitochondrial targeting of FPS may be widespread among eukaryotes.


Assuntos
Células Eucarióticas/citologia , Células Eucarióticas/enzimologia , Geraniltranstransferase/metabolismo , Mitocôndrias/enzimologia , Animais , Linhagem Celular , Drosophila melanogaster/embriologia , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Geraniltranstransferase/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica , Mitocôndrias/ultraestrutura
20.
Plant Sci ; 267: 112-123, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29362090

RESUMO

The sesquiterpene alcohol nerolidol, synthesized from farnesyl diphosphate (FDP), mediates plant-insect interactions across multiple trophic levels with major implications for pest management in agriculture. We compared nerolidol engineering strategies in tobacco using agroinfiltration to transiently express strawberry (Fragraria ananassa) linalool/nerolidol synthase (FaNES1) either at the endoplasmic reticulum (ER) or in the cytosol as a soluble protein. Using solid phase microextraction and gas chromatography-mass spectrometry (SPME-GCMS), we have determined that FaNES1 directed to the ER via fusion to the transmembrane domain of squalene synthase or hydroxymethylglutaryl - CoA reductase displayed significant improvements in terms of transcript levels, protein accumulation, and volatile production when compared to its cytosolic form. However, the highest levels of nerolidol production were observed when FaNES1 was fused to GFP and expressed in the cytosol. This SPME-GCMS method afforded a limit of detection and quantification of 1.54 and 5.13 pg, respectively. Nerolidol production levels, which ranged from 0.5 to 3.0 µg/g F.W., correlated more strongly to the accumulation of recombinant protein than transcript level, the former being highest in FaNES-GFP transfected plants. These results indicate that while the ER may represent an enriched source of FDP that can be exploited in metabolic engineering, protein accumulation is a better predictor of sesquiterpene production.


Assuntos
Fragaria/genética , Nicotiana/metabolismo , Proteínas de Plantas/genética , Sesquiterpenos/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estabilidade Proteica , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA