RESUMO
BACKGROUND: Patients on maintenance haemodialysis (HD) have an increased risk of severe coronavirus disease 2019 (COVID-19) and a reduced response to vaccines. Data are needed to identify immune correlates of protection in this population. METHODS: Following a COVID-19 outbreak among vaccinated patients in a HD unit, clinical data and serological response to BNT162b2 vaccine were retrospectively recorded. RESULTS: Among 53 patients present in the dialysis room, 14 were infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) alpha variant (COVID_Pos) and 39 were not. Compared with uninfected patients, COVID_Pos patients more frequently had additional causes of immunosuppression (50% versus 21%; P = .046) and were more often scheduled on the Monday-Wednesday-Friday (MWF) shift (86% versus 39%; P = .002). Moreover, COVID_Pos had lower anti-spike (S) immunoglobulin G (IgG) titres than uninfected patients {median 24 BAU/mL [interquartile range (IQR) 3-1163] versus 435 [99-2555]; P = .001} and lower neutralization titres [median 108 (IQR 17-224) versus 2483 (481-43 908); P = .007]. Anti-S and neutralization antibody titres are correlated (r = 0.92, P < .001). In multivariable analysis, an MWF schedule {odds ratio [OR] 10.74 [95% confidence interval (CI) 1.9-93.5], P = .014} and anti-S IgG titres 1 month before the outbreak [<205 BAU/mL: OR 0.046 (95% CI 0.002-0.29), P = .006] were independently associated with COVID-19 infection. None of the patients with anti-S IgG >284 BAU/mL got infected. Ten of 14 COVID_Pos patients were treated with casirivimab and imdevimab. No patient developed severe disease. CONCLUSIONS: Anti-S IgG titre measured prior to exposure correlates to protection from SARS-CoV-2 infection in HD patients. BNT162b2 vaccination alone or in combination with monoclonal antibodies prevented severe COVID-19.
Assuntos
COVID-19 , Vacinas Virais , Anticorpos Monoclonais Humanizados , Anticorpos Antivirais , Vacina BNT162 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Surtos de Doenças , Unidades Hospitalares de Hemodiálise , Humanos , Imunoglobulina G , Diálise Renal , Estudos Retrospectivos , SARS-CoV-2RESUMO
Functional properties of the paracellular pathway depend critically on the set of claudins (CLDN) expressed at the tight junction. Two syndromes are causally linked to loss-of-function mutations of claudins: hypohidrosis, electrolyte imbalance, lacrimal gland dysfunction, ichthyosis, and xerostomia (HELIX) syndrome caused by genetic variations in the CLDN10 gene and familial hypomagnesemia with hypercalciuria and nephrocalcinosis caused by genetic variations in the CLDN16 or CLDN19 genes. All three genes are expressed in the kidney, particularly in the thick ascending limb (TAL). However, localization of these claudins in humans and rodents remains to be delineated in detail. We studied the segmental and subcellular expression of CLDN10, CLDN16, and CLDN19 in both paraffin-embedded and frozen kidney sections from the adult human, mouse, and rat using immunohistochemistry and immunofluorescence, respectively. Here, CLDN10 was present in a subset of medullary and cortical TAL cells, localizing to basolateral domains and tight junctions in human and rodent kidneys. Weak expression was detected at the tight junction of proximal tubular cells. CLDN16 was primarily expressed in a subset of TAL cells in the cortex and outer stripe of outer medulla, restricted to basolateral domains and tight junctional structures in both human and rodent kidneys. CLDN19 predominantly colocalized with CLDN16 in tight junctions and basolateral domains of the TAL but was also found in basolateral and junctional domains in more distal sites. CLDN10 expression at tight junctions almost never overlapped with that of CLND16 and CLDN19, consistent with distinct junctional pathways with different permeation profiles in both human and rodent kidneys.NEW & NOTEWORTHY This study used immunohistochemistry and immunofluorescence to investigate the distribution of claudin 10, 16, and 19 in the human, mouse, and rat kidney. The findings showed distinct junctional pathways in both human and rodent kidneys, supporting the existence of different permeation profiles in all species investigated.
Assuntos
Claudinas/metabolismo , Túbulos Renais/metabolismo , Animais , Epitélio/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Ratos , Junções Íntimas/metabolismoRESUMO
INTRODUCTION: Kidney biopsies (KBs) are performed in patients with type 2 diabetes (T2D) to diagnose non-diabetic or hypertensive kidney disease (NDHKD) potentially requiring specific management compared to diabetic and or hypertensive nephropathy (absence of NDHKD). Indications for KB are based on the presence of atypical features compared to the typical course of diabetic nephropathy. In this study, we assessed the association of different patterns of atypical features, or KB indications, with NDHKD. METHODS: Native KBs performed in patients with T2D were analyzed. Data were collected from the patients' records. KB indications were determined according to the presence of different atypical features considered sequentially: (1) presence of any feature suggesting NDHKD which is not among the following ones, (2) recent onset of nephrotic syndrome, (3) low or rapidly declining estimated glomerular filtration rate (eGFR), (4) rapid increase in proteinuria, (5) short duration of diabetes, (6) presence of hematuria, or (7) normal retinal examination. RESULTS: Among the 463 KBs analyzed, NDHKD was diagnosed in 40% of the total population and 54, 40, 24, and 7% of the KBs performed for indications 1-4 respectively. Conversely, no patient who underwent KB for indications 5-7 displayed NDHKD. Logistic regression analyses identified eGFRCKD-EPI >15 mL/min/1.73 m2, urinary protein-to-Cr ratio <0.3 g/mmol, hematuria, HbA1c <7%, and diabetes duration <5 years as predictors of NDHKD, independently from the indication group. CONCLUSION: NDHKD is frequent in T2D. Despite the association of hematuria with NDHKD, our results suggest that presence of hematuria and absence of DR are insufficient to indicate KB in the absence of concurrent atypical features. Conversely, rapid progression of proteinuria and rapid deterioration of eGFR are major signals of NDHKD.
Assuntos
Diabetes Mellitus Tipo 2/complicações , Nefropatias/diagnóstico , Nefropatias/patologia , Rim/patologia , Seleção de Pacientes , Idoso , Biópsia , Estudos Transversais , Feminino , Taxa de Filtração Glomerular , Hematúria/patologia , Humanos , Nefropatias/fisiopatologia , Masculino , Pessoa de Meia-Idade , Proteinúria/patologia , Estudos Retrospectivos , Fatores de TempoRESUMO
KEY POINTS: An UHPLC method to measure picomole amounts of magnesium has been developed. The method is sensitive, specific, accurate and reproducible. The method is suitable for quantifying magnesium transport across intact epithelia. ABSTRACT: Magnesium is involved in many biological processes. Extracellular magnesium homeostasis mainly depends on the renal handling of magnesium, the study of which requires measurement of low concentrations of magnesium in renal tubular fluid. We developed an ultra-high-performance liquid chromatography method to measure millimolar concentrations of magnesium in nanolitre samples. Within-assay and between-assay coefficients of variation were lower than 5% and 6.6%, respectively. Measurement of magnesium concentration was linear (r2 = 0.9998) over the range 0-4 mmol/l. Absolute bias ranged from -0.03 to 0.05 mmol/l. The lower limit of quantification was 0.2 mmol/l. Recovery was 97.5-100.3%. No significant interference with calcium, another divalent cation present in the same samples, was detected. The method was successfully applied to quantify transepithelial magnesium transport by medullary and cortical thick ascending limbs during ex vivo microperfusion experiments. In conclusion, ultra-high-performance liquid chromatography is suitable for measurement of picomole amounts of magnesium in renal tubular fluid. The method allows detailed studies of transepithelial magnesium transport across native epithelium.
Assuntos
Cálcio , Magnésio , Cromatografia , Rim , Túbulos RenaisRESUMO
Background: Renal arcuate vein thrombosis (RAVT) is a rare and recently recognized cause of acute kidney injury (AKI) in young adults. However, the precise incidence and underlying pathophysiologic mechanisms leading to AKI in these patients remain elusive. Methods: This study included all patients who underwent a kidney biopsy over a 40-month period sent to the pathology department of Necker-Enfants Malades Hospital, with evidence of RAVT. We performed coagulation tests, genetic testing for thrombophilia, complete urine toxicologic screening and kidney metagenomic sequencing to identify an underlying cause of thrombosis. Results: We report five pediatric cases of RAVT discovered on kidney biopsy performed in the setting of unexplained AKI. Investigations did not reveal an underlying cause of thrombosis but only a significant nonsteroidal anti-inflammatory drugs (NSAIDs) use was reported in 4/5 patients, supporting a potential link between NSAIDs use and RAVT. By performing metagenomic sequencing on kidney biopsy samples, we detected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in the kidney of one patient. These results suggest that systemic SARS-CoV-2 infection may also be a key contributing factor of renal thrombosis, particularly by inducing potential endothelial disruption. Conclusions: In conclusion, RAVT-induced AKI appears to be a multiple hit-mediated disease in which NSAIDs consumption and viral infection such as SARS-CoV-2 may be crucial contributing factors. These findings may have significant public health implications given the prevalence of NSAIDs use in the general population. Increased awareness and additional study of future cases may lead to a better understanding of this rare cause of AKI in children and young adults.
RESUMO
The risk of acute renal failure (ARF) following iodinated contrast media injection has long been overestimated because of the previous use of more toxic ICPs and uncontrolled studies. Nowadays, this concept is being questioned. Patients with severe renal failure and/or ARF are the only group still considered at risk. In these patients, it is necessary to discuss an alternative without an iodinated contrast agent. Contrast-enhanced ultrasound, MRI, spectral CT or PET-CT scan can be used instead of contrast-enhanced CT. Preventive measures should be applied when appropriate substitute to CT is not available or not diagnosed (minimum necessary dose of ICP, interruption of some treatments and prior hydration). These recommendations formalized by the European Society of Urogenital Radiology (ESUR) in 2018 address most situations faced by clinicians. In complex situations, an opinion from a nephrologist remains necessary after asking the radiologist about the availability of acceptable substitutes.