Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894869

RESUMO

Neurolysin oligopeptidase (E.C.3.4.24.16; Nln), a member of the zinc metallopeptidase M3 family, was first identified in rat brain synaptic membranes hydrolyzing neurotensin at the Pro-Tyr peptide bond. The previous development of C57BL6/N mice with suppression of Nln gene expression (Nln-/-), demonstrated the biological relevance of this oligopeptidase for insulin signaling and glucose uptake. Here, several metabolic parameters were investigated in Nln-/- and wild-type C57BL6/N animals (WT; n = 5-8), male and female, fed either a standard (SD) or a hypercaloric diet (HD), for seven weeks. Higher food intake and body mass gain was observed for Nln-/- animals fed HD, compared to both male and female WT control animals fed HD. Leptin gene expression was higher in Nln-/- male and female animals fed HD, compared to WT controls. Both WT and Nln-/- females fed HD showed similar gene expression increase of dipeptidyl peptidase 4 (DPP4), a peptidase related to glucagon-like peptide-1 (GLP-1) metabolism. The present data suggest that Nln participates in the physiological mechanisms related to diet-induced obesity. Further studies will be necessary to better understand the molecular mechanism responsible for the higher body mass gain observed in Nln-/- animals fed HD.


Assuntos
Dieta , Obesidade , Ratos , Camundongos , Animais , Masculino , Feminino , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Dieta/efeitos adversos , Metaloendopeptidases/genética
2.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35456900

RESUMO

Peptide DIIADDEPLT (Pep19) has been previously suggested to improve metabolic parameters, without adverse central nervous system effects, in a murine model of diet-induced obesity. Here, we aimed to further evaluate whether Pep19 oral administration has anti-obesogenic effects, in a well-established high-fat diet-induced obesity model. Male Swiss mice, fed either a standard diet (SD) or high-fat diet (HFD), were orally administrated for 30 consecutive days, once a day, with saline vehicle or Pep19 (1 mg/kg). Next, several metabolic, morphological, and behavioral parameters were evaluated. Oral administration of Pep19 attenuated HFD body-weight gain, reduced in approximately 40% the absolute mass of the endocrine pancreas, and improved the relationship between circulating insulin and peripheral insulin sensitivity. Pep19 treatment of HFD-fed mice attenuated liver inflammation, hepatic fat distribution and accumulation, and lowered plasma alanine aminotransferase activity. The inguinal fat depot from the SD group treated with Pep19 showed multilocular brown-fat-like cells and increased mRNA expression of uncoupling protein 1 (UCP1), suggesting browning on inguinal white adipose cells. Morphological analysis of brown adipose tissue (BAT) from HFD mice showed the presence of larger white-like unilocular cells, compared to BAT from SD, Pep19-treated SD or HFD mice. Pep19 treatment produced no alterations in mice behavior. Oral administration of Pep19 ameliorates some metabolic traits altered by diet-induced obesity in a Swiss mice model.


Assuntos
Resistência à Insulina , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Proteínas do Tecido Nervoso , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Fenótipo
3.
Molecules ; 25(5)2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32121443

RESUMO

Overweight and obesity are among the most prominent health problems in the modern world, mostly because they are either associated with or increase the risk of other diseases such as type 2 diabetes, hypertension, and/or cancer. Most professional organizations define overweight and obesity according to individual body-mass index (BMI, weight in kilograms divided by height squared in meters). Overweight is defined as individuals with BMI from 25 to 29, and obesity as individuals with BMI ≥30. Obesity is the result of genetic, behavioral, environmental, physiological, social, and cultural factors that result in energy imbalance and promote excessive fat deposition. Despite all the knowledge concerning the pathophysiology of obesity, which is considered a disease, none of the existing treatments alone or in combination can normalize blood glucose concentration and prevent debilitating complications from obesity. This review discusses some new perspectives for overweight and obesity treatments, including the use of the new orally active cannabinoid peptide Pep19, the advantage of which is the absence of undesired central nervous system effects usually experienced with other cannabinoids.


Assuntos
Índice de Massa Corporal , Canabinoides/uso terapêutico , Diabetes Mellitus Tipo 2 , Proteínas do Tecido Nervoso/uso terapêutico , Obesidade , Peptídeos/uso terapêutico , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/fisiopatologia , Humanos , Obesidade/sangue , Obesidade/tratamento farmacológico , Obesidade/fisiopatologia
4.
Neurochem Res ; 43(11): 2017-2024, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30159819

RESUMO

The mechanisms by which peptidergic signals are terminated have been the center of multiple studies leading to the discoveries of novel proteolytic activities. When studying the catabolic fate of neurotensin (NT) in brain and gastrointestinal tract, we detected a novel activity belonging to the metallopeptidases class and apparently distinct from previously known enzymes. Purification and cloning confirmed that this NT-degrading neutral metalloendopeptidase activity was indeed original. It was named endopeptidase 3.4.24.16 according to the IUBMB nomenclature and later, referred to as neurolysin. This review tells the history of neurolysin from its initial detection to its purification, cloning, design of specific inhibitors as well as in vitro and in vivo pharmacological studies aimed at delineating its role in the control of NT function. Finally, we discuss very recent advances suggesting a potential role of neurolysin in pathologies.


Assuntos
Encéfalo/metabolismo , Trato Gastrointestinal/metabolismo , Metaloendopeptidases/metabolismo , Neurotensina/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Fragmentos de Peptídeos/metabolismo
5.
J Biol Chem ; 289(22): 15426-40, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24719317

RESUMO

The oligopeptidase neurolysin (EC 3.4.24.16; Nln) was first identified in rat brain synaptic membranes and shown to ubiquitously participate in the catabolism of bioactive peptides such as neurotensin and bradykinin. Recently, it was suggested that Nln reduction could improve insulin sensitivity. Here, we have shown that Nln KO mice have increased glucose tolerance, insulin sensitivity, and gluconeogenesis. KO mice have increased liver mRNA for several genes related to gluconeogenesis. Isotopic label semiquantitative peptidomic analysis suggests an increase in specific intracellular peptides in gastrocnemius and epididymal adipose tissue, which likely is involved with the increased glucose tolerance and insulin sensitivity in the KO mice. These results suggest the exciting new possibility that Nln is a key enzyme for energy metabolism and could be a novel therapeutic target to improve glucose uptake and insulin sensitivity.


Assuntos
Gluconeogênese/fisiologia , Intolerância à Glucose/enzimologia , Resistência à Insulina/fisiologia , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Tecido Adiposo/fisiologia , Animais , Glicemia/metabolismo , Pressão Sanguínea/fisiologia , Genótipo , Gluconeogênese/genética , Intolerância à Glucose/genética , Resistência à Insulina/genética , Fígado/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Musculares de Contração Rápida/fisiologia , Músculo Esquelético/fisiologia , Fenótipo , Condicionamento Físico Animal/fisiologia , Ácido Pirúvico/metabolismo
6.
J Biol Chem ; 289(24): 16711-26, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24764300

RESUMO

Intracellular peptides are constantly produced by the ubiquitin-proteasome system, and many are probably functional. Here, the peptide WELVVLGKL (pep5) from G1/S-specific cyclin D2 showed a 2-fold increase during the S phase of HeLa cell cycle. pep5 (25-100 µm) induced cell death in several tumor cells only when it was fused to a cell-penetrating peptide (pep5-cpp), suggesting its intracellular function. In vivo, pep5-cpp reduced the volume of the rat C6 glioblastoma by almost 50%. The tryptophan at the N terminus of pep5 is essential for its cell death activity, and N terminus acetylation reduced the potency of pep5-cpp. WELVVL is the minimal active sequence of pep5, whereas Leu-Ala substitutions totally abolished pep5 cell death activity. Findings from the initial characterization of the cell death/signaling mechanism of pep5 include caspase 3/7 and 9 activation, inhibition of Akt2 phosphorylation, activation of p38α and -γ, and inhibition of proteasome activity. Further pharmacological analyses suggest that pep5 can trigger cell death by distinctive pathways, which can be blocked by IM-54 or a combination of necrostatin-1 and q-VD-OPh. These data further support the biological and pharmacological potential of intracellular peptides.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclina D2/farmacologia , Oligopeptídeos/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Motivos de Aminoácidos , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Ciclo Celular , Ciclina D2/química , Glioblastoma/tratamento farmacológico , Células HeLa , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Células MCF-7 , Masculino , Maleimidas/farmacologia , Oligopeptídeos/química , Oligopeptídeos/uso terapêutico , Quinolinas/farmacologia , Ratos , Ratos Wistar
7.
Methods Mol Biol ; 2758: 199-212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549015

RESUMO

Peptides have broad biological significance among different species. Intracellular peptides are considered a particular class of bioactive peptides, whose generation is initiated by proteasomal degradation of cytosolic, nuclear, or mitochondrial proteins. To extract and purify intracellular peptides, which may apply for biological peptides in general, it is important to consider the initial source: tissue, cell, or fluid. First, it is important to proceed fast with inactivation of proteases and/or peptidases commonly present in the biological source of peptides, which might rapidly degrade peptides during the initial process of extraction. The incubation of biological tissues, cells, and fluids at 80 °C for up to 20 min have been sufficient to fully inactivate proteases or peptidases activities. It is particularly important not to acidify the samples at high temperature, because it can lead to nonspecific hydrolysis reactions; particularly, the Asp-Pro peptide bond can be cleaved at acidic environments and elevated temperatures. Unfortunately, not every sample can have proteinases and peptidases denatured by heating the biological source of intracellular peptides. Plasma, for example, when heated at temperatures higher than 55 °C can clot and trap peptides within the fibrin net. Therefore, alternative conditions for inactivating proteinases and peptidases must apply for plasma samples. In this chapter, the most successful methods used in our laboratory to extract intracellular peptides are described.


Assuntos
Peptídeo Hidrolases , Peptídeos , Peptídeos/química , Peptídeo Hidrolases/metabolismo , Endopeptidases , Hidrólise , Proteômica
8.
iScience ; 26(9): 107542, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37636076

RESUMO

Intracellular peptides (InPeps) generated by the orchestrated action of the proteasome and intracellular peptidases have biological and pharmacological significance. Here, human plasma relative concentration of specific InPeps was compared between 175 patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and 45 SARS-CoV-2 non-infected patients; 2,466 unique peptides were identified, of which 67% were InPeps. The results revealed differences of a specific group of peptides in human plasma comparing non-infected individuals to patients infected by SARS-CoV-2, following the results of the semi-quantitative analyses by isotope-labeled electrospray mass spectrometry. The protein-protein interactions networks enriched pathways, drawn by genes encoding the proteins from which the peptides originated, revealed the presence of the coronavirus disease/COVID-19 network solely in the group of patients fatally infected by SARS-CoV-2. Thus, modulation of the relative plasma levels of specific InPeps could be employed as a predictive tool for disease outcome.

9.
Proteomics ; 12(17): 2668-81, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22740317

RESUMO

Intracellular peptides generated by the proteasome and oligopeptidases have been suggested to function in signal transduction and to improve insulin resistance in mice fed a high-caloric diet. The aim of this study was to identify specific intracellular peptides in the adipose tissue of Wistar rats that could be associated with the physiological and therapeutic control of glucose uptake. Using semiquantitative mass spectrometry and LC/MS/MS analyses, we identified ten peptides in the epididymal adipose tissue of the Wistar rats; three of these peptides were present at increased levels in rats that were fed a high-caloric Western diet (WD) compared with rats fed a control diet (CD). The results of affinity chromatography suggested that in the cytoplasm of epididymal adipose tissue from either WD or CD rats, distinctive proteins bind to these peptides. However, despite the observed increase in the WD animals, the evaluated peptides increased insulin-stimulated glucose uptake in 3T3-L1 adipocytes treated with palmitate. Thus, intracellular peptides from the adipose tissue of Wistar rats can bind to specific proteins and facilitate insulin-induced glucose uptake in 3T3-L1 adipocytes.


Assuntos
Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Glucose/metabolismo , Resistência à Insulina , Peptídeos/análise , Peptídeos/metabolismo , Células 3T3 , Adipócitos/citologia , Adipócitos/metabolismo , Sequência de Aminoácidos , Animais , Cromatografia de Afinidade , Cromatografia Líquida , Ingestão de Energia , Insulina/metabolismo , Masculino , Camundongos , Dados de Sequência Molecular , Ácido Palmítico/metabolismo , Ligação Proteica , Proteínas/metabolismo , Ratos , Ratos Wistar , Espectrometria de Massas em Tandem
10.
Proteomics ; 12(17): 2641-55, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22740335

RESUMO

Protein interactions are crucial for most cellular process. Thus, rationally designed peptides that act as competitive assembly inhibitors of protein interactions by mimicking specific, determined structural elements have been extensively used in clinical and basic research. Recently, mammalian cells have been shown to contain a large number of intracellular peptides of unknown function. Here, we investigate the role of several of these natural intracellular peptides as putative modulators of protein interactions that are related to Ca(2+) -calmodulin (CaM) and 14-3-3ε, which are proteins that are related to the spatial organization of signal transduction within cells. At concentrations of 1-50 µM, most of the peptides that are investigated in this study modulate the interactions of CaM and 14-3-3ε with proteins from the mouse brain cytoplasm or recombinant thimet oligopeptidase (EP24.15) in vitro, as measured by surface plasmon resonance. One of these peptides (VFDVELL; VFD-7) increases the cytosolic Ca(2+) concentration in a dose-dependent manner but only if introduced into HEK293 cells, which suggests a wide biological function of this peptide. Therefore, it is exciting to suggest that natural intracellular peptides are novel modulators of protein interactions and have biological functions within cells.


Assuntos
Proteínas 14-3-3/metabolismo , Encéfalo/metabolismo , Calmodulina/metabolismo , Metaloendopeptidases/metabolismo , Peptídeos/metabolismo , Mapas de Interação de Proteínas , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Peptídeos/química , Proteínas Recombinantes/metabolismo
11.
J Proteome Res ; 11(3): 1981-90, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22304392

RESUMO

Peptides derived from cytosolic, mitochondrial, and nuclear proteins have been detected in extracts of animal tissues and cell lines. To test whether the proteasome is involved in their formation, HEK293T cells were treated with epoxomicin (0.2 or 2 µM) for 1 h and quantitative peptidomics analysis was performed. Altogether, 147 unique peptides were identified by mass spectrometry sequence analysis. Epoxomicin treatment decreased the levels of the majority of intracellular peptides, consistent with inhibition of the proteasome beta-2 and beta-5 subunits. Treatment with the higher concentration of epoxomicin elevated the levels of some peptides. Most of the elevated peptides resulted from cleavages at acidic residues, suggesting that epoxomicin increased the processing of proteins through the beta-1 subunit. Interestingly, some of the peptides that were elevated by the epoxomicin treatment had hydrophobic residues in P1 cleavage sites. Taken together, these findings suggest that, while the proteasome is the major source of intracellular peptides, other peptide-generating mechanisms exist. Because intracellular peptides are likely to perform intracellular functions, studies using proteasome inhibitors need to be interpreted with caution, as it is possible that the effects of these inhibitors are due to a change in the peptide levels rather than inhibition of protein degradation.


Assuntos
Fragmentos de Peptídeos/metabolismo , Inibidores de Proteassoma , Proteoma/metabolismo , Sequência de Aminoácidos , Citosol/efeitos dos fármacos , Citosol/metabolismo , Células HEK293 , Humanos , Dados de Sequência Molecular , Oligopeptídeos/farmacologia , Mapeamento de Peptídeos , Complexo de Endopeptidases do Proteassoma/metabolismo , Análise de Sequência de Proteína , Espectrometria de Massas em Tandem
12.
Biochem Biophys Res Commun ; 419(4): 724-7, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22387539

RESUMO

Many studies indicate that thimet oligopeptidase (EC3.4.24.15; TOP) can be implicated in the metabolism of bioactive peptides, including dynorphin 1-8, α-neoendorphin, ß-neoendorphin and GnRH. Furthermore, the higher levels of this peptidase are found in neuroendocrine tissue and testis. In the present study, we have evaluated the effect of acute cocaine administration in male rats on TOP specific activity and mRNA levels in prosencephalic brain areas related with the reward circuitry; ventral striatum, hippocampus, and frontal cortex. No significant differences on TOP specific activity were detected in the hippocampus and frontal cortex of cocaine treated animals compared to control vehicle group. However, a significant increase in activity was observed in the ventral striatum of cocaine treated-rats. The increase occurred in both, TOP specific activity and TOP relative mRNA amount determined by real time RT-PCR. As TOP can be implicated in the processing of many neuropeptides, and previous studies have shown that cocaine also alters the gene expression of proenkephalin and prodynorphin in the striatum, the present findings suggest that TOP changes in the brain could play important role in the balance of neuropeptide level correlated with cocaine effects.


Assuntos
Cocaína/administração & dosagem , Corpo Estriado/enzimologia , Encefalinas/metabolismo , Metaloendopeptidases/biossíntese , Precursores de Proteínas/metabolismo , Animais , Encefalinas/genética , Expressão Gênica/efeitos dos fármacos , Masculino , Metaloendopeptidases/genética , Precursores de Proteínas/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Wistar
13.
Mol Pharm ; 9(5): 1077-86, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22497602

RESUMO

With significant progress in delivery technologies, peptides and peptidomimetics are receiving increasing attention as potential therapeutics also for intracellular applications. However, analyses of the intracellular behavior of peptides are a challenge; therefore, knowledge on the intracellular pharmacokinetics of peptides is limited. So far, most research has focused on peptide degradation in the context of antigen processing, rather than on peptide stability. Here, we studied the structure-activity relationship of peptides with respect to intracellular residence time and proteolytic breakdown. The peptides comprised a collection of interaction motifs of SH2 and SH3 domains with different charge but that were of similar size and carried an N-terminal fluorescein moiety. First, we show that electroporation is a highly powerful technique to introduce peptides with different charge and hydrophobicity in uniform yields. Remarkably, the peptides differed strongly in retention of intracellular fluorescence with half-lives ranging from only 1 to more than 10 h. Residence times were greatly increased for retro-inverso peptides, demonstrating that rapid loss of fluorescence is a function of peptide degradation rather than the physicochemical characteristics of the peptide. Differences in proteolytic sensitivity were further confirmed using fluorescence correlation spectroscopy as a separation-free analytical technique to follow degradation in crude cell lysates and also in intact cells. The results provide a straightforward analytical access to a better understanding of the principles of peptide stability inside cells and will therefore greatly assist the development of bioactive peptides.


Assuntos
Peptídeos/farmacocinética , Sequência de Aminoácidos , Linhagem Celular , Eletroporação , Citometria de Fluxo , Fluorescência , Humanos , Modelos Teóricos , Dados de Sequência Molecular , Peptídeos/química , Peptidomiméticos , Espectrometria de Fluorescência , Relação Estrutura-Atividade
14.
Cells ; 11(3)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35159195

RESUMO

Intracellular peptides (InPeps) generated by proteasomes were previously suggested as putative natural regulators of protein-protein interactions (PPI). Here, the main aim was to investigate the intracellular effects of intracellular peptide VFDVELL (VFD7) and related peptides on PPI. The internalization of the peptides was achieved using a C-terminus covalently bound cell-penetrating peptide (cpp; YGRKKRRQRRR). The possible inhibition of PPI was investigated using a NanoBiT® luciferase structural complementation reporter system, with a pair of plasmids vectors each encoding, simultaneously, either FK506-binding protein (FKBP) or FKBP-binding domain (FRB) of mechanistic target of rapamycin complex 1 (mTORC1). The interaction of FKBP-FRB within cells occurs under rapamycin induction. Results shown that rapamycin-induced interaction between FKBP-FRB within human embryonic kidney 293 (HEK293) cells was inhibited by VFD7-cpp (10-500 nM) and FDVELLYGRKKRRQRRR (VFD6-cpp; 1-500 nM); additional VFD7-cpp derivatives were either less or not effective in inhibiting FKBP-FRB interaction induced by rapamycin. Molecular dynamics simulations suggested that selected peptides, such as VFD7-cpp, VFD6-cpp, VFAVELLYGRKKKRRQRRR (VFA7-cpp), and VFEVELLYGRKKKRRQRRR (VFA7-cpp), bind to FKBP and to FRB protein surfaces. However, only VFD7-cpp and VFD6-cpp induced changes on FKBP structure, which could help with understanding their mechanism of PPI inhibition. InPeps extracted from HEK293 cells were found mainly associated with macromolecular components (i.e., proteins and/or nucleic acids), contributing to understanding InPeps' intracellular proteolytic stability and mechanism of action-inhibiting PPI within cells. In a model of cell death induced by hypoxia-reoxygenation, VFD6-cpp (1 µM) increased the viability of mouse embryonic fibroblasts cells (MEF) expressing mTORC1-regulated autophagy-related gene 5 (Atg5), but not in autophagy-deficient MEF cells lacking the expression of Atg5. These data suggest that VFD6-cpp could have therapeutic applications reducing undesired side effects of rapamycin long-term treatments. In summary, the present report provides further evidence that InPeps have biological significance and could be valuable tools for the rational design of therapeutic molecules targeting intracellular PPI.


Assuntos
Sirolimo , Proteína 1A de Ligação a Tacrolimo , Animais , Autofagia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Peptídeos/farmacologia , Sirolimo/farmacologia , Tacrolimo , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo
15.
J Proteome Res ; 10(4): 1583-92, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21204522

RESUMO

Peptides have been proposed to function in intracellular signaling within the cytosol. Although cytosolic peptides are considered to be highly unstable, a large number of peptides have been detected in mouse brain and other biological samples. In the present study, we evaluated the peptidome of three diverse cell lines: SH-SY5Y, MCF7, and HEK293 cells. A comparison of the peptidomes revealed considerable overlap in the identity of the peptides found in each cell line. The majority of the observed peptides are not derived from the most abundant or least stable proteins in the cell, and approximately half of the cellular peptides correspond to the N- or C- termini of the precursor proteins. Cleavage site analysis revealed a preference for hydrophobic residues in the P1 position. Quantitative peptidomic analysis indicated that the levels of most cellular peptides are not altered in response to elevated intracellular calcium, suggesting that calpain is not responsible for their production. The similarity of the peptidomes of the three cell lines and the lack of correlation with the predicted cellular degradome implies the selective formation or retention of these peptides, consistent with the hypothesis that they are functional in the cells.


Assuntos
Linhagem Celular/química , Peptídeos/análise , Animais , Humanos , Camundongos , Proteínas/química , Proteínas/metabolismo , Proteoma/análise
16.
FASEB J ; 24(6): 1813-23, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20061535

RESUMO

Purkinje cell degeneration (pcd) mice have a mutation within the gene encoding cytosolic carboxypeptidase 1 (CCP1/Nna1), which has homology to metallocarboxypeptidases. To assess the function of CCP1/Nna1, quantitative proteomics and peptidomics approaches were used to compare proteins and peptides in mutant and wild-type mice. Hundreds of peptides derived from cytosolic and mitochondrial proteins are greatly elevated in pcd mouse hypothalamus, amygdala, cortex, prefrontal cortex, and striatum. However, the major proteins detected on 2-D gel electrophoresis were present in mutant and wild-type mouse cortex and hypothalamus at comparable levels, and proteasome activity is normal in these brain regions of pcd mice, suggesting that the increase in cellular peptide levels in the pcd mice is due to reduced degradation of the peptides downstream of the proteasome. Both nondegenerating and degenerating regions of pcd mouse brain, but not wild-type mouse brain, show elevated autophagy, which can be triggered by a decrease in amino acid levels. Taken together with previous studies on CCP1/Nna1, these data suggest that CCP1/Nna1 plays a role in protein turnover by cleaving proteasome-generated peptides into amino acids and that decreased peptide turnover in the pcd mice leads to cell death.


Assuntos
Proteínas de Ligação ao GTP/fisiologia , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Proteínas do Tecido Nervoso/metabolismo , Células de Purkinje/patologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina/fisiologia , Aminoácidos/metabolismo , Animais , Autofagia , Morte Celular , Eletroforese em Gel Bidimensional , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fragmentos de Peptídeos/metabolismo , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Neuropharmacology ; 183: 108406, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33212113

RESUMO

Hemopressin (PVNFKFLSH in rats, and PVNFKLLSH in humans and mice), a fragment derived from the α-chain of hemoglobin, was the first peptide described to have type 1 cannabinoid receptor activity. While hemopressin was shown to have inverse agonist/antagonistic activity, extended forms of hemopressin (i.e. RVD-hemopressin, also called pepcan-12) exhibit type 1 and type 2 cannabinoid receptor agonistic/allosteric activity, and recent studies suggest that they can activate intracellular mitochondrial cannabinoid receptors. Therefore, hemopressin and hemopressin-related peptides could have location-specific and biased pharmacological action, which would increase the possibilities for fine-tunning and broadening cannabinoid receptor signal transduction. Consistent with this, hemopressins were shown to play a role in a number of physiological processes including antinociceptive and anti-inflammatory activity, regulation of food intake, learning and memory. The shortest active hemopressin fragment, NFKF, delays the first seizure induced by pilocarpine, and prevents neurodegeneration in an experimental model of autoimmune encephalomyelitis. These functions of hemopressins could be due to engagement of both cannabinoid and non-cannabinoid receptor systems. Self-assembled nanofibrils of hemopressin have pH-sensitive switchable surface-active properties, and show potential as inflammation and cancer targeted drug-delivery systems. Upon disruption of the self-assembled hemopressin nanofibril emulsion, the intrinsic analgesic and anti-inflammatory properties of hemopressin could help bolster the therapeutic effect of anti-inflammatory or anti-cancer formulations. In this article, we briefly review the molecular and behavioral pharmacological properties of hemopressins, and summarize studies on the intricate and unique mode of generation and binding of these peptides to cannabinoid receptors. Thus, the review provides a window into the current status of hemopressins in expanding the repertoire of signaling and activity by the endocannabinoid system, in addition to their new potential for pharmaceutic formulations.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Endocanabinoides/fisiologia , Hemoglobinas/farmacologia , Fragmentos de Peptídeos/farmacologia , Animais , Hemoglobinas/química , Hemoglobinas/genética , Hemoglobinas/fisiologia , Humanos , Camundongos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/fisiologia , Ratos , Receptores de Canabinoides
18.
Pharmaceutics ; 13(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34959456

RESUMO

Intracellular peptides were shown to derive from proteasomal degradation of proteins from mammalian and yeast cells, being suggested to play distinctive roles both inside and outside these cells. Here, the role of intracellular peptides previously identified from skeletal muscle and adipose tissues of C57BL6/N wild type (WT) and neurolysin knockout mice were investigated. In differentiated C2C12 mouse skeletal muscle cells, some of these intracellular peptides like insulin activated the expression of several genes related to muscle contraction and gluconeogenesis. One of these peptides, LASVSTVLTSKYR (Ric4; 600 µg/kg), administrated either intraperitoneally or orally in WT mice, decreased glycemia. Neither insulin (10 nM) nor Ric4 (100 µM) induced glucose uptake in adipose tissue explants obtained from conditional knockout mice depleted of insulin receptor. Ric4 (100 µM) similarly to insulin (100 nM) induced Glut4 translocation to the plasma membrane of C2C12 differentiated cells, and increased GLUT4 mRNA levels in epididymal adipose tissue of WT mice. Ric4 (100 µM) increased both Erk and Akt phosphorylation in C2C12, as well as in epididymal adipose tissue from WT mice; Erk, but not Akt phosphorylation was activated by Ric4 in tibial skeletal muscle from WT mice. Ric4 is rapidly degraded in vitro by WT liver and kidney crude extracts, such a response that is largely reduced by structural modifications such as N-terminal acetylation, C-terminal amidation, and substitution of Leu8 for DLeu8 (Ac-LASVSTV[DLeu]TSKYR-NH2; Ric4-16). Ric4-16, among several Ric4 derivatives, efficiently induced glucose uptake in differentiated C2C12 cells. Among six Ric4-derivatives evaluated in vivo, Ac-LASVSTVLTSKYR-NH2 (Ric4-2; 600 µg/kg) and Ac-LASVSTV[DLeu]TSKYR (Ric4-15; 600 µg/kg) administrated orally efficiently reduced glycemia in a glucose tolerance test in WT mice. The potential clinical application of Ric4 and Ric4-derivatives deserves further attention.

19.
J Proteomics ; 240: 104188, 2021 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-33781962

RESUMO

Intracranial saccular aneurysms (ISA) represent 90%-95% of all intracranial aneurysm cases, characterizing abnormal pockets at arterial branch points. Ruptures lead to subarachnoid hemorrhages (SAH) and poor prognoses. We applied mass spectrometry-based peptidomics to investigate the peptidome of twelve cerebrospinal fluid (CSF) samples collected from eleven patients diagnosed with ISA. For peptide profile analyses, participants were classified into: 1) ruptured intracranial saccular aneurysms (RIA), 2) unruptured intracranial saccular aneurysms (UIA), and late-ruptured intracranial saccular aneurysms (LRIA). Altogether, a total of 2199 peptides were detected by both Mascot and Peaks software, from which 484 (22.0%) were unique peptides. All unique peptides presented conserved chains, domains, regions of protein modulation and/or post-translational modification sites related to human diseases. Gene Ontology (GO) analyses of peptide precursor proteins showed that 42% are involved in binding, 56% in cellular anatomical entities, and 39% in intercellular signaling molecules. Unique peptides identified in patients diagnosed with RIA have a larger molecular weight and a distinctive developmental process compared to UIA and LRIA (P ≤ 0.05). Continued investigations will allow the characterization of the biological and clinical significance of the peptides identified in the present study, as well as identify prototypes for peptide-based pharmacological therapies to treat ISA. SIGNIFICANCE.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Acidente Vascular Cerebral , Hemorragia Subaracnóidea , Humanos
20.
Eur J Pharmacol ; 890: 173636, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33053380

RESUMO

Inflammatory arthritis, such as rheumatoid arthritis (RA), stands out as one of the main sources of pain and impairment to the quality of life. The use of hemopressin (PVNFKFLSH; Hp), an inverse agonist of type 1 cannabinoid receptor, has proven to be effective in producing analgesia in pain models, but its effect on neuro-inflammatory aspects of RA is limited. In this study, antigen-induced arthritis (AIA) was evoked by the intraarticular (i.art.) injection of methylated bovine serum albumin (mBSA) in male Sprague Dawley rats. Phosphate buffered saline (PBS)-injected ipsilateral knee joints or AIA contralateral were used as control. Nociceptive and inflammatory parameters such as knee joint oedema and leukocyte influx and histopathological changes were carried out in addition to the local measurement of interleukins (IL) IL-6, IL-1ß, tumor necrosis factor-α and the immunoreactivity of the neuropeptides substance P (SP) and calcitonin gene related peptide (CGRP) in the spinal cord (lumbar L3-5 segments) of AIA rats. For 4 days, AIA rats were treated daily with a single administration of saline, Hp injected (10 or 20 µg/day, i.art.), Hp given orally (20 µg/Kg, p.o.) or indomethacin (Indo; 5 mg/Kg, i.p.). In comparison to the PBS control group, the induction of AIA produced a significant and progressive mono-arthritis condition. The degree of AIA severity progressively compromised the normal walking pattern and impaired mobility over the next four days in relation to PBS-injected rats or contralateral knee joints. In AIA rats, the reduction of the distance between footprints and disturbances of gait evidenced signs of nociception. This response worsened at day 4, and a loss of footprint from the ipsilateral hind paw was evident. Daily treatment of the animals with Hp either i.art. (10 and 20 µg/knee) or p.o. (20 µg/Kg) as well as Indo (5 mg/Kg, i.p.) ameliorated the impaired mobility in a time-dependent manner (P < 0.05). In parallel, the AIA-injected ipsilateral knee joints reach a peak of swelling 24 h after AIA induction, which persisted over the next four days in relation to PBS-injected rats or contralateral knee joints. There was a significant but not dose-dependent inhibitory effect produced by all dosages and routes of Hp treatments on AIA-induced knee joint swelling (P < 0.05). In addition, the increased synovial levels of MPO activity, total leukocytes number and IL-6, but not IL-1ß, were significantly reduced by the lower i.art. dose of Hp. In conclusion, these results successfully demonstrate that Hp may represent a novel therapeutic strategy to treat RA, an effect which is unrelated to the proinflammatory actions of the neuropeptides CGRP and SP.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Hemoglobinas/farmacologia , Dor Nociceptiva/prevenção & controle , Fragmentos de Peptídeos/farmacologia , Administração Oral , Animais , Anti-Inflamatórios/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Citocinas/metabolismo , Edema/tratamento farmacológico , Marcha/efeitos dos fármacos , Hemoglobinas/administração & dosagem , Inflamação/tratamento farmacológico , Injeções Intra-Articulares , Articulação do Joelho/efeitos dos fármacos , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , Leucócitos/efeitos dos fármacos , Masculino , Fragmentos de Peptídeos/administração & dosagem , Ratos Sprague-Dawley , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Substância P/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA