Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
N Engl J Med ; 382(21): 2005-2011, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32220208

RESUMO

BACKGROUND: Long-term care facilities are high-risk settings for severe outcomes from outbreaks of Covid-19, owing to both the advanced age and frequent chronic underlying health conditions of the residents and the movement of health care personnel among facilities in a region. METHODS: After identification on February 28, 2020, of a confirmed case of Covid-19 in a skilled nursing facility in King County, Washington, Public Health-Seattle and King County, aided by the Centers for Disease Control and Prevention, launched a case investigation, contact tracing, quarantine of exposed persons, isolation of confirmed and suspected cases, and on-site enhancement of infection prevention and control. RESULTS: As of March 18, a total of 167 confirmed cases of Covid-19 affecting 101 residents, 50 health care personnel, and 16 visitors were found to be epidemiologically linked to the facility. Most cases among residents included respiratory illness consistent with Covid-19; however, in 7 residents no symptoms were documented. Hospitalization rates for facility residents, visitors, and staff were 54.5%, 50.0%, and 6.0%, respectively. The case fatality rate for residents was 33.7% (34 of 101). As of March 18, a total of 30 long-term care facilities with at least one confirmed case of Covid-19 had been identified in King County. CONCLUSIONS: In the context of rapidly escalating Covid-19 outbreaks, proactive steps by long-term care facilities to identify and exclude potentially infected staff and visitors, actively monitor for potentially infected patients, and implement appropriate infection prevention and control measures are needed to prevent the introduction of Covid-19.


Assuntos
Betacoronavirus , Infecções por Coronavirus/epidemiologia , Transmissão de Doença Infecciosa , Controle de Infecções/métodos , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Instituições de Cuidados Especializados de Enfermagem , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Busca de Comunicante , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Surtos de Doenças , Transmissão de Doença Infecciosa/prevenção & controle , Feminino , Pessoal de Saúde , Humanos , Assistência de Longa Duração , Masculino , Pessoa de Meia-Idade , Pneumonia Viral/mortalidade , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , SARS-CoV-2 , Washington/epidemiologia
2.
MMWR Morb Mortal Wkly Rep ; 69(12): 339-342, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32214083

RESUMO

On February 28, 2020, a case of coronavirus disease (COVID-19) was identified in a woman resident of a long-term care skilled nursing facility (facility A) in King County, Washington.* Epidemiologic investigation of facility A identified 129 cases of COVID-19 associated with facility A, including 81 of the residents, 34 staff members, and 14 visitors; 23 persons died. Limitations in effective infection control and prevention and staff members working in multiple facilities contributed to intra- and interfacility spread. COVID-19 can spread rapidly in long-term residential care facilities, and persons with chronic underlying medical conditions are at greater risk for COVID-19-associated severe disease and death. Long-term care facilities should take proactive steps to protect the health of residents and preserve the health care workforce by identifying and excluding potentially infected staff members and visitors, ensuring early recognition of potentially infected patients, and implementing appropriate infection control measures.


Assuntos
Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Surtos de Doenças , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , Instituições Residenciais , Instituições de Cuidados Especializados de Enfermagem , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19 , Doença Crônica , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/prevenção & controle , Surtos de Doenças/prevenção & controle , Evolução Fatal , Feminino , Humanos , Controle de Infecções/normas , Assistência de Longa Duração , Masculino , Pessoa de Meia-Idade , Pneumonia Viral/mortalidade , Pneumonia Viral/prevenção & controle , Fatores de Risco , Washington/epidemiologia , Adulto Jovem
3.
PLoS One ; 11(5): e0155041, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27158977

RESUMO

Yellow fever continues to be an important epidemiological problem in Africa and South America even though the disease can be controlled by vaccination. The vaccine has been produced since 1937 and is based on YFV 17DD chicken embryo infection. However, little is known about the histopathological background of virus infection and replication in this model. Here we show by morphological and molecular methods (brightfield and confocal microscopies, immunofluorescence, nested-PCR and sequencing) the kinetics of YFV 17DD infection in chicken embryos with 9 days of development, encompassing 24 to 96 hours post infection. Our principal findings indicate that the main cells involved in virus production are myoblasts with a mesenchymal shape, which also are the first cells to express virus proteins in Gallus gallus embryos at 48 hours after infection. At 72 hours post infection, we observed an increase of infected cells in embryos. Many sites are thus affected in the infection sequence, especially the skeletal muscle. We were also able to confirm an increase of nervous system infection at 96 hours post infection. Our data contribute to the comprehension of the pathogenesis of YF 17DD virus infection in Gallus gallus embryos.


Assuntos
Febre Amarela/patologia , Animais , Embrião de Galinha , Cinética , Microscopia Confocal
4.
PLoS Negl Trop Dis ; 9(9): e0004064, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26371874

RESUMO

The yellow fever (YF) 17D vaccine is one of the most effective human vaccines ever created. The YF vaccine has been produced since 1937 in embryonated chicken eggs inoculated with the YF 17D virus. Yet, little information is available about the infection mechanism of YF 17DD virus in this biological model. To better understand this mechanism, we infected embryos of Gallus gallus domesticus and analyzed their histopathology after 72 hours of YF infection. Some embryos showed few apoptotic bodies in infected tissues, suggesting mild focal infection processes. Confocal and super-resolution microscopic analysis allowed us to identify as targets of viral infection: skeletal muscle cells, cardiomyocytes, nervous system cells, renal tubular epithelium, lung parenchyma, and fibroblasts associated with connective tissue in the perichondrium and dermis. The virus replication was heaviest in muscle tissues. In all of these specimens, RT-PCR methods confirmed the presence of replicative intermediate and genomic YF RNA. This clearer characterization of cell targets in chicken embryos paves the way for future development of a new YF vaccine based on a new cell culture system.


Assuntos
Vacina contra Febre Amarela , Vírus da Febre Amarela/crescimento & desenvolvimento , Estruturas Animais/virologia , Animais , Embrião de Galinha , Histocitoquímica , Vacinas Atenuadas , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA