Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 755, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531483

RESUMO

Fecal microbiota transplantation (FMT) is a successful therapeutic strategy for treating recurrent Clostridioides difficile infection. Despite remarkable efficacy, implementation of FMT therapy is limited and the mechanism of action remains poorly understood. Here, we demonstrate a critical role for the immune system in supporting FMT using a murine C. difficile infection system. Following FMT, Rag1 heterozygote mice resolve C. difficile while littermate Rag1-/- mice fail to clear the infection. Targeted ablation of adaptive immune cell subsets reveal a necessary role for CD4+ Foxp3+ T-regulatory cells, but not B cells or CD8+ T cells, in FMT-mediated resolution of C. difficile infection. FMT non-responsive mice exhibit exacerbated inflammation, impaired engraftment of the FMT bacterial community and failed restoration of commensal bacteria-derived secondary bile acid metabolites in the large intestine. These data demonstrate that the host's inflammatory immune status can limit the efficacy of microbiota-based therapeutics to treat C. difficile infection.


Assuntos
Clostridioides difficile/patogenicidade , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Infecções por Clostridium/imunologia , Infecções por Clostridium/metabolismo , Fezes/microbiologia , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Homeodomínio/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Camundongos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
2.
Gut Microbes ; 12(1): 1-15, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33305657

RESUMO

Clostridioides difficile is an enteric bacterial pathogen that can a cause nosocomial infection leading to debilitating colitis. The development of a murine model of C. difficile infection has led to fundamental discoveries in disease pathogenesis and the host immune response to infection. Recently, C. difficile endogenously present in the microbiota of mice has been reported and was found to complicate interpretation of mouse studies. Here, we report a novel C. difficile strain, named NTCD-035, isolated from the microbiota of our mouse colony. The presence of NTCD-035 in mice prior to challenge with a highly pathogenic C. difficile strain (VPI10463) led to significantly reduced disease severity. Phylogenetic characterization derived from whole genome sequencing and PCR ribotyping identified the isolate as a novel clade 1, ribotype 035 strain that lacks the pathogenicity locus required to produce toxins. Deficiency in toxin production along with sporulation capacity and secondary bile acid sensitivity was confirmed using in vitro assays. Inoculation of germ-free mice with NTCD-035 did not cause morbidity despite the strain readily colonizing the large intestine. Implementation of a culture-based screening procedure enabled the identification of mice harboring C. difficile in their microbiota, the establishment of a C. difficile-free mouse colony, and a monitoring system to prevent future contamination. Taken together, these data provide a framework for screening mice for endogenously harbored C. difficile and support clinical findings that demonstrate the therapeutic potential of non-toxigenic strains in preventing C. difficile associated disease. Abbreviations: PaLoc - Pathogenicity locus, CFUs - Colony forming units, TcdA - toxin-A, TcdB - toxin-B, CdtA - binary toxin A, CdtB - binary toxin B, CdtR - binary toxin R, NTCD - non-toxigenic C. difficile.


Assuntos
ADP Ribose Transferases/genética , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Clostridioides difficile/isolamento & purificação , Enterotoxinas/genética , Genoma Bacteriano/genética , ADP Ribose Transferases/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/classificação , Clostridioides difficile/genética , Enterotoxinas/metabolismo , Intestino Grosso/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/genética , Virulência/genética , Sequenciamento Completo do Genoma
3.
PLoS One ; 15(6): e0234046, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32585680

RESUMO

The recent ban of the antimicrobial compound triclosan from use in consumer soaps followed research that showcased the risk it poses to the environment and to human health. Triclosan has been found in human plasma, urine and milk, demonstrating that it is present in human tissues. Previous work has also demonstrated that consumption of triclosan disrupts the gut microbial community of mice and zebrafish. Due to the widespread use of triclosan and ubiquity in the environment, it is imperative to understand the impact this chemical has on the human body and its symbiotic resident microbes. To that end, this study is the first to explore how triclosan impacts the human gut microbial community in vitro both during and after treatment. Through our in vitro system simulating three regions of the human gut; the ascending colon, transverse colon, and descending colon regions, we found that treatment with triclosan significantly impacted the community structure in terms of reduced population, diversity, and metabolite production, most notably in the ascending colon region. Given a 2 week recovery period, most of the population levels, community structure, and diversity levels were recovered for all colon regions. Our results demonstrate that the human gut microbial community diversity and population size is significantly impacted by triclosan at a high dose in vitro, and that the community is recoverable within this system.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Triclosan/farmacologia , Biodiversidade , Relação Dose-Resposta a Droga , Microbioma Gastrointestinal/genética , Humanos
4.
Microbiome ; 7(1): 46, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30902113

RESUMO

BACKGROUND: Analysis of mixed microbial communities using metagenomic sequencing experiments requires multiple preprocessing and analytical steps to interpret the microbial and genetic composition of samples. Analytical steps include quality control, adapter trimming, host decontamination, metagenomic classification, read assembly, and alignment to reference genomes. RESULTS: We present a modular and user-extensible pipeline called Sunbeam that performs these steps in a consistent and reproducible fashion. It can be installed in a single step, does not require administrative access to the host computer system, and can work with most cluster computing frameworks. We also introduce Komplexity, a software tool to eliminate potentially problematic, low-complexity nucleotide sequences from metagenomic data. A unique component of the Sunbeam pipeline is an easy-to-use extension framework that enables users to add custom processing or analysis steps directly to the workflow. The pipeline and its extension framework are well documented, in routine use, and regularly updated. CONCLUSIONS: Sunbeam provides a foundation to build more in-depth analyses and to enable comparisons in metagenomic sequencing experiments by removing problematic, low-complexity reads and standardizing post-processing and analytical steps. Sunbeam is written in Python using the Snakemake workflow management software and is freely available at github.com/sunbeam-labs/sunbeam under the GPLv3.


Assuntos
Biologia Computacional/métodos , Metagenômica/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Análise de Dados , Mineração de Dados , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA