Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Indian J Microbiol ; 64(1): 225-228, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468738

RESUMO

Mannosylerythritol-lipids-B (MEL-B) are microbial-produced glycolipids with skincare properties, notably moisturizing, antimelanogenic, antimicrobial, and antiaging. Thus, there is a potential use of MEL-B in a formulation for treating acne-prone skin. This study investigated the antimicrobial effect of MEL-B against the Gram-positive bacteria Cutibacterium acnes. The broth macro dilution method was used to evaluate the growth of C. acnes (3-4 CFU/mL), in the absence (positive control) or presence of MEL-B (128, 192, 256, and 512 µg/mL). Additionally, the leakage of genetic materials was used to determine the potential drug-induced membrane disruption of glycolipids. The amount of DNA and RNA release was quantified spectrophotometrically at 260 nm. Macro dilution technique and membrane integrity experiments showed that MEL-B does not have antimicrobial activity against C. acnes. Indeed, MEL-B assisted C. acnes growth. Ultimately, MEL-B has been reported as a remarkably active compound for skincare formulations; however, preliminarily, it should be avoided for acneic skin.

2.
J Environ Sci Health B ; 58(1): 1-9, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36573540

RESUMO

The present study examined the effects of mesoporous silica nanoparticles (MSNs) on its adsorption capacity of aflatoxin B1 (AFB1). Moreover, the study evaluated the toxicity of MSNs with AFB1 using NIH3T3 cells and hemolysis test. The obtained MSNs were spherical, irregular-like in shape, having a mean size of 39.97 ± 7.85 nm and a BET surface area of 1195 m2/g. At 0.1 mg mL-1 concentration of MSN, the AFB1 adsorption capacity was 30%, which reached 70% when the MSN concentration increased to 2.0 mg mL-1. Our findings showed that AFB1 was adsorbed (∼67%) in the first few minutes on being in contact with MSNs, reaching an adsorption capacity of ∼70% after 15 min. Thereafter, the adsorption capacity remained constant in solution, demonstrating that the MSNs adsorbed toxins even beyond overnight. MSN treatment (0.5-2.0 mg mL-1) using NIH3T3 cells did not result in any reduction in cell viability. In addition, MSN treatment completely reversed the cytotoxic effect of AFB1 at all concentrations. Hemolysis test also revealed no hemolysis in MSNs evaluated alone and in those combined with AFB1. To the best of our knowledge, this study is the first to demonstrate that MSN can reduce cell toxicity produced by AFB1 due to its potential to adsorb mycotoxins.


Assuntos
Micotoxinas , Nanopartículas , Animais , Camundongos , Aflatoxina B1 , Dióxido de Silício , Células NIH 3T3
3.
Curr Microbiol ; 79(1): 9, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34905100

RESUMO

The discovery of the potential of paraprobiotics to exert different immunological benefits suggests that further studies should be carried out to determine their potential and mechanisms of action in modulating the immune system. The objective of this study was to investigate the immune response of several microbial-associated molecular patterns (MAMPS) used at different doses in macrophage cell lines RAW-264.7 stimulated with lipopolysaccharide (LPS). Two experiments were conducted. The first was performed to determine a dose response curve for each paraprobiotic (Bifidobacterium lactis, Lactobacillus casei, Lactobacillus gasseri, Lactobacillus paracasei, and Streptococcus thermophilus). Further experiments were carried using only two doses (0.01 g/ml and 0.1 g/ml). RAW-264.7 cells were cultivated in Dubelcco's Modified Eagle's medium supplemented with fetal bovine serum and penicillin/streptomycin. Cells were incubated with LPS (1 µg/ml) and six concentrations of MAMPs were added. RAW-264.7 viability, myeloperoxidase activity, nitrite/nitrate concentration, reactive oxygen species production, oxidative damage, and inflammatory parameters were measured. In the LPS group, there was a significant reduction in cell viability. Myeloperoxidase and nitrite/nitrate concentrations demonstrated a better effect at 0.01 and 0.1 g/ml doses. There was a significant reduction in interleukin-6 (IL-6) levels at 0.1 g/ml dose in all paraprobiotics. IL-10 levels decreased in the LPS group and increased at 0.1 g/ml dose in all paraprobiotics. The dichlorofluorescin diacetate results were reinforced by the observed in oxidative damage. Paraprobiotics are likely to contribute to the improvement of intestinal homeostasis, immunomodulation, and host metabolism.


Assuntos
Lacticaseibacillus casei , Lipopolissacarídeos , Bifidobacterium , Imunidade , Imunomodulação , Macrófagos , Streptococcus
4.
Appl Microbiol Biotechnol ; 104(20): 8595-8605, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32875366

RESUMO

Mannosylerythritol lipids (MEL) are glycolipids mainly produced by pseudo-yeasts. These molecules present remarkable biological activities widely explored in many fields, including medicine, pharmaceuticals, and cosmetics. This review presents the main biological activity of MEL on the HL60, K562, B16, PC12, and skin cells. There is strong evidence that MEL changes the levels of glycosphingolipids of HL-60 lineage, which induce differentiation into granulocytic cells. Regarding B16 cells, MEL can trigger both apoptosis (10 µM) and cell differentiation (5 µM), in which the MEL concentration is related to each metabolic pathway. MEL can also trigger differentiation in PC12 cells due to the increase in the GalCer content. In this specific case, the effects are transient, and the differentiated cells are unstable and tend to apoptosis. MEL-B can particularly maintain skin hydration and moisture due to their self-assembled structures that resemble the tissue cells. Moreover, MEL-B repair aquaporin expression in the HaCaT keratinocytes damaged with UVA irradiation, whereas MEL-C suppresses the expression of COX-2 protein in fibroblasts, indicating that these glycolipids activate the cellular antioxidant mechanism. Recent findings denoted the anti-melanogenic activity of MEL since they suppress tyrosinase enzyme at mRNA levels in B16 and NHMs cells. MEL act effectively on mammalian cells; however, there is no clear pattern of their metabolic effects. Also, gene expression levels seem to be related to two main factors: chemical structure and concentration. However, the specific signaling cascades that are induced by MEL remain inconclusive. Thus, further investigations are vital to understanding these mechanisms clearly. KEY POINTS: • The four MEL homologs promote different biological responses in mammalian cells. • MEL modifies the pattern of glycosphingolipids in the plasma membrane of tumor cells. • Activation/deactivation of phosphorylation of serine/threonine kinase proteins.


Assuntos
Glicolipídeos , Glicoesfingolipídeos , Animais , Diferenciação Celular , Melaninas , Fosforilação , Ratos , Tensoativos
5.
Appl Microbiol Biotechnol ; 104(6): 2297-2318, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31980917

RESUMO

Mannosylerythritol lipids (MELs) have attracted particular interest of medical, pharmaceutical, and cosmetic fields, due to their specific characteristics, including non-toxicity, easy biodegradability, and environmental compatibility. Therefore, this review aims to highlight recent findings on MEL biological properties, focusing on issues related to therapeutic applications. Among the main findings is that MELs can play a fundamental role due to their antimicrobial properties against several nosocomial pathogen microorganisms. Other remarkable biological properties of MELs are related to skincare, as antiaging (active agent), and in particular on recover of skin cells that were damaged by UV radiation. MEL is also related to the increased efficiency of DNA transfection in liposome systems. Regarding the health field, these glycolipids seem to be associated with disturbance in the membrane composition of cancerous cells, increasing expression of genes responsible for cytoplasmic stress and apoptosis. Moreover, MELs can be associated with nanoparticles, as a capping agent, also acting to increase the solubility and cytotoxicity of them. Furthermore, the differences in the chemical structure of MEL could improve and expand their biochemical diversity and applications. Such modifications could change their interfacial properties and, thus, reduce the surface tension value, enhance the solubility, lower critical micelle concentrations, and form unique self-assembly structures. The latest is closely related to molecular recognition and protein stabilization properties of MEL, that is, essential parameters for their effective cosmetical and pharmaceutical effects. Thus, this current research indicates the huge potential of MEL for use in biomedical formulations, either alone or in combination with other molecules.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Glicolipídeos/química , Glicolipídeos/farmacologia , Antibacterianos/química , Bactérias/patogenicidade , Cosméticos , Humanos , Micelas , Tensoativos
6.
Pharm Dev Technol ; 24(5): 593-599, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30457422

RESUMO

The current paucity of effective and affordable drugs for the treatment of leishmaniasis renders the search for new therapeutic alternatives a priority. Gallic acid-related compounds display anti-parasitic activities and their incorporation into drug carrier systems, such as polymeric nanoparticles may be a viable alternative for leishmaniasis treatment. Therefore, this study focused on the synthesis and characterization of octyl gallate (G8) loaded poly(methyl methacrylate) (PMMA) nanoparticles via miniemulsion polymerization in order to increase the leishmanicidal activity of this compound. G8 loaded PMMA nanoparticles presented a spherical morphology with a mean size of 108 nm, a negatively charged surface (-33 ± 5 mV) and high encapsulation efficiency (83% ± 5). Fourier-transform infrared spectroscopy and X-ray diffraction analysis confirmed that G8 was encapsulated in PMMA nanoparticles and presented a biphasic release profile. The G8 loaded PMMA nanoparticles did not present cytotoxic effect on human red blood cells. G8 loaded PMMA nanoparticles displayed a leishmanicidal activity almost three times higher than free G8 while the cytotoxic activity against human THP-1 cells remained unchanged.


Assuntos
Portadores de Fármacos/química , Ácido Gálico/análogos & derivados , Leishmania/efeitos dos fármacos , Polimetil Metacrilato/química , Tripanossomicidas/administração & dosagem , Tripanossomicidas/farmacologia , Células CACO-2 , Linhagem Celular , Liberação Controlada de Fármacos , Emulsões/química , Ácido Gálico/administração & dosagem , Ácido Gálico/química , Ácido Gálico/farmacologia , Hemólise/efeitos dos fármacos , Humanos , Leishmaniose/tratamento farmacológico , Nanopartículas/química , Nanopartículas/ultraestrutura , Tripanossomicidas/química
7.
J Mater Sci Mater Med ; 27(12): 185, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27787810

RESUMO

Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid were synthesized by miniemulsion polymerization in just one step. In vitro biocompatibility and cytotoxicity assays on L929 (murine fibroblast), human red blood, and HeLa (uterine colon cancer) cells were performed. The effect of folic acid at the nanoparticles surface was evaluated through cellular uptake assays in HeLa cells. Results showed that the presence of folic acid did not affect substantially the polymer particle size (~120 nm), the superparamagnetic behavior, the encapsulation efficiency of lauryl gallate (~87 %), the Zeta potential (~38 mV) of the polymeric nanoparticles or the release profile of lauryl gallate. The release profile of lauryl gallate from superparamagnetic poly(methyl methacrylate) nanoparticles presented an initial burst effect (0-1 h) followed by a slow and sustained release, indicating a biphasic release system. Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles with folic acid did not present cytotoxicity effects on L929 and human red blood cells. However, free lauryl gallate presented significant cytotoxic effects on L929 and human red blood cells at all tested concentrations. The presence of folic acid increased the cytotoxicity of lauryl gallate loaded in nanoparticles on HeLa cells due to a higher cellular uptake when HeLa cells were incubated at 37 °C. On the other hand, when the nanoparticles were incubated at low temperature (4 °C) cellular uptake was not observed, suggesting that the uptake occurred by folate receptor mediated energy-dependent endocytosis. Based on presented results our work suggests that this carrier system can be an excellent alternative in targeted drug delivery by folate receptor.


Assuntos
Ácido Fólico/química , Ácido Gálico/análogos & derivados , Nanopartículas de Magnetita/química , Polimetil Metacrilato/química , Animais , Materiais Biocompatíveis , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/farmacologia , Endocitose , Eritrócitos/citologia , Ácido Gálico/farmacocinética , Células HeLa , Hemólise , Humanos , Cinética , Camundongos , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Temperatura , Termogravimetria
8.
J Drug Target ; : 1-15, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38980282

RESUMO

Cost-effective strategies for the treatment of chronic wounds must be developed. The green synthesis of gold nanoparticles (GNPs) it is possible to guarantee a lower toxicity in biological tissues and greater safety of applicability, in addition to adding the effects of nanoparticles (NPs) to those of extracts. The objective of this study was to evaluate the effects of treatment with biosynthesized GNPs in a chronic wound model. Wistar rats were distributed into 7 groups: Acute Wound (AW); Chronic wound (CW); CW + GNPs-Açaí; CW + GNPs-DB; CW + AV-GNPs; CW + SafGel®; CW + 660 nm laser. The chronic injury model was induced with topically applied Resiquimod for 6 days. Treatments were then initated on the fourteenth day after the last application of Resiquimod and carried out daily for ten days. The proposed therapies with GNPs were able to significantly reduce the inflammatory score and increase the rate of wound contraction. In histology, there was a reduction in the inflammatory infiltrate and increased gene expression of fibronectin and type III collagen, mainly in the CW + AV-GNPs group. The therapies were able to reduce pro-inflammatory cytokines, increase anti-inflammatory cytokines, and reduce oxidative stress. The results demonstrated that the effects of GNPs appear to complement those of the extracts, thereby enhancing the tissue repair process.

9.
Diagn Microbiol Infect Dis ; 109(3): 116326, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692205

RESUMO

Serodiagnosis methods have been used as platforms for diagnostic tests for many diseases. Due to magnetic nanoparticles' properties to quickly detach from an external magnetic field and particle size effects, these nanomaterials' functionalization allows the specific isolation of target analytes, enhancing accuracy parameters and reducing serodiagnosis time. Superparamagnetic iron oxide nanoparticles (MNPs) were synthesized and functionalized with polyethylene glycol (PEG) and then associated with the synthetic Leishmaniosis epitope. This nano-peptide antigen showed promising results. Regarding Tegumentary leishmaniasis diagnostic accuracy, the AUC was 0.8398 with sensibility 75% (95CI% 50.50 - 89.82) and specificity 87.50% (95CI% 71.93 - 95.03), and Visceral leishmaniasis accuracy study also present high performance, the AUC was 0.9258 with sensibility 87.50% (95CI% 63.98 - 97.78) and specificity 87.50% (95CI% 71.93 - 95.03). Our results demonstrate that the association of the antigen with MNPs accelerates and improves the diagnosis process. MNPs could be an important tool for enhancing serodiagnosis.


Assuntos
Ensaio de Imunoadsorção Enzimática , Polietilenoglicóis , Sensibilidade e Especificidade , Humanos , Ensaio de Imunoadsorção Enzimática/métodos , Polietilenoglicóis/química , Antígenos de Protozoários/imunologia , Leishmaniose/diagnóstico , Nanopartículas Magnéticas de Óxido de Ferro/química , Anticorpos Antiprotozoários/sangue
10.
Basic Clin Pharmacol Toxicol ; 132(6): 473-485, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36882317

RESUMO

This study aimed to investigate the effect of intranasal treatment of gold nanoparticles (GNPs) and Curcumin (Cur) on the lipopolysaccharide (LPS)-induced acute pulmonary inflammatory response. A single intraperitoneal injection of LPS (0.5 mg/Kg) was performed, and the animals in the Sham group were injected with 0.9% saline. Treatment was daily intranasally with GNPs (2.5 mg/L), Cur (10 mg/kg) and GNP-Cur started 12 h after LPS administration and ended on the seventh day. The results show that the treatment performed with GNP-Cur was the most effective to attenuate the action of pro-inflammatory cytokines, and a lower leukocyte count in the bronchoalveolar lavage, in addition to positively regulating anti-inflammatory cytokines in relation to other groups. As a result, it promoted an oxirreductive balanced environment in the lung tissue, providing a histological outcome with a reduction in inflammatory cells and greater alveolar area. The group treated with GNPs-Cur was superior to the other groups, with better anti-inflammatory activity and reduced oxidative stress, resulting in less morphological damage to lung tissue. In conclusion, the use of reduced GNPs with curcumin demonstrates promising effects in the control of the acute inflammatory response, helping to protect the lung tissue at the biochemical and morphological levels.


Assuntos
Curcumina , Nanopartículas Metálicas , Pneumonia , Ratos , Animais , Lipopolissacarídeos/toxicidade , Ratos Wistar , Ouro/farmacologia , Curcumina/farmacologia , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Pneumonia/prevenção & controle , Pulmão/patologia , Citocinas , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/patologia , Anti-Inflamatórios/farmacologia
11.
Curr Drug Targets ; 24(3): 287-296, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36515017

RESUMO

INTRODUCTION: The association between triamcinolone hexacetonide (TH) and gold nanoparticles (GNPs) represents a promising treatment due to the potential anti-inflammatory and antioxidant effects of these compounds. In this study, we evaluated the effects of intra-articular treatment of TH associated with GNPs in a mechanical model of osteoarthritis (OA). METHODS: Fifty Wistar rats were divided into five groups: Sham; OA; OA+TH; OA+GNPs; OA+TH-GNPs. Both applications were performed 30 and 60 days after the model was induced. After 30 days of the last application, the animals were euthanized. RESULTS: Only the combined treatment with TH and GNPs promoted a reduction in proinflammatory cytokines and an increase in anti-inflammatory cytokines. The OA+TH-GNPs group obtained a significant reduction in the production of oxidants and oxidative damage markers while an increase in antioxidants. Histologically, all treated groups showed results of a significant increase in cartilage thickness and chondrocyte count, the OA+TH-GNPs group had similar behavior to the group without osteoarthritis, with significantly smaller amounts of chondrocytes than the OA group. CONCLUSION: The intra-articular use of TH associated with GNPs may be able to prevent the progression of the pathology and minimize joint degradation.


Assuntos
Cartilagem Articular , Nanopartículas Metálicas , Osteoartrite , Ratos , Animais , Ouro , Ratos Wistar , Cartilagem Articular/metabolismo , Osteoartrite/metabolismo , Modelos Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Citocinas/metabolismo , Condrócitos/metabolismo , Condrócitos/patologia
12.
Antioxidants (Basel) ; 12(8)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37627569

RESUMO

This study aimed to evaluate and compare the effects of treatment with gold nanoparticles (GNPs) reduced with Curcumin (Curcuma longa L.) or Açai (Euterpe oleracea) to a standard commercial treatment of the pharmacological type (Omcilon®) and an electrophysical agent (photobiomodulation) in the palatal wounds of rats. As for the in vitro assay, a cell viability test was performed to assess the toxicity of the synthesized nanoparticles. In vivo assay: 60 Wistar rats were divided into five groups (n = 12): I. Palatal Wound (PW); II. PW + Photobiomodulation (PBM); III. PW + Omcilon®; IV. PW + GNPs-Cur (0.025 mg/mL); V. PW + GNPs-Açai (0.025 mg/mL). Animals were first anesthetized, and circular lesions in the palatine mucosa were induced using a 4 mm-diameter punch. The first treatment session started 24 h after the injury and occurred daily for 5 days. The animals were euthanized, and the palatal mucosa tissue was removed for histological, biochemical, and molecular analysis. GNPs-Açai were able to significantly reduce pro-inflammatory cytokines and increase anti-inflammatory ones, reduce oxidant markers, and reduce inflammatory infiltrate while increasing the collagen area and contraction rate of the wound, along with an improved visual qualification. The present study demonstrated that the proposed therapies of GNPs synthesized greenly, thus associating their effects with those of plants, favor the tissue repair process in palatal wounds.

13.
Curr Opin Biotechnol ; 77: 102769, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35985133

RESUMO

Mannosylerythritol lipids (MELs) are biosurfactants produced by various fungal species. Depending on the degree of acetylation and further chemical modifications, these glycolipids can show remarkable biological properties, including the increase of water retention in the stratum corneum suppression of melanogenic enzymes tyrosinase-1 and -2, reversion of UV-A radiation-induced aquaporin-3 suppression, skin whitening, and anti-aging effects. These applications of MELs require high purity, which is usually reached by liquid-liquid extraction followed by chromatography, obtaining ≥95% purity. This worked aimed to critically discuss the current state of the art and trends on the production of MELs, including post-production treatment as enzymatic conversion. In addition, their application as skincare or pharmaceutical agents and agricultural biostimulants.


Assuntos
Ustilaginales , Glicolipídeos/química , Glicolipídeos/farmacologia , Tensoativos/química
14.
ACS Appl Nano Mater ; 5(1): 642-653, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35098045

RESUMO

The COVID-19 pandemic, caused by the fast transmission and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently considered a serious health problem, requiring an effective strategy to contain SARS-CoV-2 dissemination. For this purpose, epitopes of the SARS-CoV-2 spike (S) and sucleocapsid (N) proteins were identified by bioinformatics tools, and peptides that mimic these epitopes were chemically synthesized and then conjugated to superparamagnetic nanoparticles (SPMNPs). Three peptides from S protein and three from N protein were used as antigens in a conventional enzyme-linked immunosorbent assay (ELISA) against serum samples from COVID-19-positive patients, or from healthy donors, collected before the pandemic. Three peptides were effective as antigens in conventional peptide-based ELISA, achieving 100% sensitivity and specificity, with high accuracy. The best-performing peptides, p2pS, p1pN, and p3pN, were associated with superparamagnetic nanoparticles (SPMNPs) and were used to perform nanomagnetic peptide-based ELISA. The p2pS-SPMNP conjugate presented 100% sensitivity and specificity and excellent accuracy (area under the curve (AUC) = 1.0). However, p1pN and p3pN peptides, when conjugated to SPMNPs, did not preserve the capacity to differentiate positive sera from negative sera in all tested samples, yet both presented sensitivity and specificity above 80% and high accuracy, AUC > 0.9. We obtained three peptides as advantageous antigens for serodiagnosis. These peptides, especially p2pS, showed promising results in a nanomagnetic peptide-based ELISA and may be suitable as a precoated antigen for commercial purposes, which would accelerate the diagnosis process.

15.
J Biomed Mater Res B Appl Biomater ; 110(3): 702-711, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34619018

RESUMO

Poly(thioether-ester) (PTEe) nanoparticles obtained by thiol-ene polymerization have received attention of many researchers due to several advantages, including, biocompatibility and biodegradability. The search for new nanomaterials requires toxicity studies to assess potential toxic effects of their administration. Therefore, the aim of this study was to evaluate the in vivo acute toxicity of PTEe and poly(thioether-ester)-coated magnetic nanoparticles prepared by thiol-ene polymerization in miniemulsion. These nanoparticles presented a mean size of approximately 120 nm, spherical morphology, and negative surface charge. Doses of 40 mg/kg were administered intraperitoneally to Swiss mice and nociceptive, behavioral and biochemical parameters were investigated in five different organs. None of the nanoparticles led to any alterations in the nociceptive and behavioral responses. Biochemical alterations were observed in liver, decreasing the sulfhydryl and glutathione (GSH) levels, suggesting the dependence of the GSH metabolism in the elimination of the nanoparticles. In general, both nanoparticle types did not cause disturbances in biochemical parameters analyzed in others organs. These results suggest that both nanoparticle types did not induce acute toxicity to the different organs evaluated, reinforcing the biocompatibility of PTEe nanoparticles synthetized by thiol-ene polymerization.


Assuntos
Nanopartículas , Sulfetos , Animais , Ésteres , Nanopartículas Magnéticas de Óxido de Ferro , Camundongos , Nanopartículas/toxicidade , Polimerização , Compostos de Sulfidrila , Sulfetos/toxicidade
16.
J Biomed Mater Res B Appl Biomater ; 110(6): 1234-1244, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34894049

RESUMO

Inhalation of harmful particles appears as a primary factor for the onset and establishment of chronic obstructive pulmonary disease (COPD). Cigarette smoke acutely promotes an exacerbated inflammatory response with oxidative stress induction with DNA damage. Administration of Gold Nanoparticles (GNPs) with 20 nm in different concentrations can revert damages caused by external aggravations. The effects of GNPs in a COPD process have not been observed until now. The objective of this work was to evaluate the therapeutic effects of intranasal administration of different doses of GNPs after acute exposure to industrial cigarette smoke. Thirty male Swiss mice were randomly divided into five groups: Sham; cigarette smoke (CS); CS + GNPs 2.5 mg/L; CS + GNPs 7.5 mg/L and CS + GNPs 22.5 mg/L. The animals were exposed to the commercial cigarette with filter in an acrylic inhalation chamber and treated with intranasal GNPs for five consecutive days. The results demonstrate that exposure to CS causes an increase in inflammatory cytokines, histological changes, oxidative and nitrosive damage in the lung, as well as increased damage to the DNA of liver cells, blood plasma and lung. Among the three doses of GNPs (2.5, 7.5, and 22.5 mg/L) used, the highest dose had better anti-inflammatory effects. However, GNPs at a dose of 7.5 mg/L showed better efficacies in reducing ROS formation, alveolar diameter, and the number of inflammatory cells in histology, in addition to significantly reduced rate of DNA damage in lung cells without additional systemic genotoxicity already caused by cigarette smoke.


Assuntos
Fumar Cigarros , Nanopartículas Metálicas , Doença Pulmonar Obstrutiva Crônica , Administração Intranasal , Animais , Líquido da Lavagem Broncoalveolar , Ouro/farmacologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/patologia , Nicotiana
17.
Environ Sci Pollut Res Int ; 29(27): 41247-41260, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35089511

RESUMO

Preservative treatments increase the durability of wood, and one of the alternative treatments involves the use of chromated copper arsenate (CCA). Due to the toxicity of CCA, the disposal of CCA-treated wood residues is problematic, and burning is considered to provide a solution. The ecotoxicological potential of ash can be high when these components are toxic and mutagenic. The aim of this study was to evaluate the toxicity and genotoxicity of bottom ash leachates originating from CCA-treated wood burning. Physical-chemical analysis of the leachates revealed that in treated wood ashes leachate (CCA-TWBAL), the contents of arsenic and chromium were 59.45 mg.L-1 and 54.28 mg.L-1, respectively. In untreated wood ashes leachate (UWBAL), these contents were 0.70 mg.L-1 and 0.30 mg.L-1, respectively. CCA-TWBAL caused significant toxicity in Lactuca sativa, Allium cepa, and microcrustacean Artemia spp. (LC50 = 12.12 mg.mL-1). Comet assay analyses using NIH3T3 cells revealed that concentrations ranging from 1.0 and 2.5 mg.mL-1 increase the damage frequency (DF) and damage index (DI). According to MTT assay results, CCA-TWBAL at concentrations as low as 1 mg.mL-1 caused a significant decrease in cellular viability. Hemolysis assay analyses suggest that the arsenic and chromium leachate contents are important for the ecotoxic, cytotoxic, and genotoxic effects of CCA-TWBAL.


Assuntos
Antineoplásicos , Arsênio , Eliminação de Resíduos , Animais , Arseniatos/química , Arseniatos/toxicidade , Arsênio/análise , Cromo/análise , Cobre/química , Dano ao DNA , Camundongos , Células NIH 3T3 , Eliminação de Resíduos/métodos , Madeira/química
18.
J Biomater Appl ; 37(4): 668-682, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35705485

RESUMO

Objectives: This article aimed to investigate the effects of the association between photobiomodulation and hyaluronic acid incorporated in lipid nanoparticles in an epithelial lesion model in inflammatory parameters and oxidative stress. Methods: Eighty Wistar rats were randomly assigned to the following groups: epithelial lesion group (EL); EL+PBM; EL+HA; EL+SLNs; EL+SLNs-HA; EL+PBM+HA; EL+PBM+SLNs; EL+PBM+SLNs-HA. The animals were anesthetized with 4% isofluorane after shaving and induced to an epithelial lesion. Topical treatment with a gel containing HA (0.9%) and/or SLNs (10 mg/mL) and with laser irradiation occurred daily for 1 week. Results: The results showed an increase in wound contraction on the seventh day in the LE + LBM + AH-NPL group, a reduction in pro-inflammatory cytokines (IL-6, IL-1ß, and TNF-α), an increase in anti-inflammatory cytokines (IL- 4 and IL-10) and TGF-ß. The levels of pro-inflammatory cytokine IL-4 and TGF-ß also showed an increase in the LE + NPL-AH, LE + FBM + AH, LE + FBM + NPL and LE + FBM + NPL-AH groups. Regarding oxidative stress parameters, the levels of DCF and nitrite decreased in the combined therapy group when compared to the control group, as well as oxidative damage (carbonyl and sulfhydryl). In the antioxidant defense, there was an increase in GSH and SOD in the combination therapy group. Histological analysis showed a reduction in inflammatory infiltrate in the combination therapy group. The number of fibroblasts and the compaction of collagen fibers did not obtain significant responses. Conclusions: Results analyzed together showed that the combined therapy favored the repair process, and that studies can be carried out to enhance the histological analysis therapy favored the tissue repair process and that studies can be carried out to enhance the histological analysis.


Assuntos
Ácido Hialurônico , Terapia com Luz de Baixa Intensidade , Animais , Antioxidantes/farmacologia , Colágeno/farmacologia , Citocinas , Ácido Hialurônico/farmacologia , Ácido Hialurônico/uso terapêutico , Interleucina-10 , Interleucina-4 , Interleucina-6 , Lipossomos , Terapia com Luz de Baixa Intensidade/métodos , Nanopartículas , Nitritos/farmacologia , Ratos , Ratos Wistar , Superóxido Dismutase/farmacologia , Fator de Crescimento Transformador beta/farmacologia , Fator de Necrose Tumoral alfa , Cicatrização
19.
Eur J Pharmacol ; 923: 174934, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35367420

RESUMO

Leishmaniasis is a neglected tropical disease that has a wide spectrum of clinical manifestations, ranging from visceral to cutaneous, with millions of new cases and thousands of deaths notified every year. The severity of the disease and its various clinical forms are determined by the species of the causative agent, Leishmania, as well as the host's immune response. Major challenges still exist in the diagnosis and treatment of leishmaniasis, and there is no vaccine available to prevent this disease in humans. Nanotechnology has emerged as a promising tool in a variety of fields. In this review, we highlight the main and most recent advances in nanomedicine to improve the diagnosis and treatment, as well as for the development of vaccines, for leishmaniasis. Nanomaterials are nanometric in size and can be produced by a variety of materials, including lipids, polymers, ceramics, and metals, with varying structures and morphologies. Nanotechnology can be used as biosensors to detect antibodies or antigens, thus improving the sensitivity and specificity of such immunological and molecular diagnostic tests. While in treatment, nanomaterials can act as drug carriers or, be used directly, to reduce any toxic effects of drug compounds to the host and to be more selective towards the parasite. Furthermore, preclinical studies show that different nanomaterials can carry different Leishmania antigens, or even act as adjuvants to improve a Th1 immune response in an attempt to produce an effective vaccine.


Assuntos
Leishmania , Leishmaniose , Vacinas , Portadores de Fármacos , Humanos , Leishmaniose/diagnóstico , Leishmaniose/tratamento farmacológico , Leishmaniose/prevenção & controle , Nanomedicina , Nanotecnologia , Vacinas/farmacologia
20.
Antioxidants (Basel) ; 11(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36421443

RESUMO

This study aimed to investigate the effects of iontophoresis and hyaluronic acid (HA) combined with a gold nanoparticle (GNP) solution in an excisional wound model. Fifty Wistar rats (n = 10/group) were randomly assigned to the following groups: excisional wound (EW); EW + MC; EW + MC + HA; EW + MC + GNPs; and EW + MC + HA + GNPs. The animals were induced to a circular excision, and treatment started 24 h after injury with microcurrents (300 µA) containing gel with HA (0.9%) and/or GNPs (30 mg/L) in the electrodes (1 mL) for 7 days. The animals were euthanized 12 h after the last treatment application. The results demonstrate a reduction in the levels of pro-inflammatory cytokines (IFNϒ, IL-1ß, TNFα, and IL-6) in the group in which the therapies were combined, and they show increased levels of anti-inflammatory cytokines (IL-4 and IL-10) and growth factors (FGF and TGF-ß) in the EW + MC + HA and EW + MC + HA + GNPs groups. As for the levels of dichlorofluorescein (DCF) and nitrite, as well as oxidative damage (carbonyl and sulfhydryl), they decreased in the combined therapy group when compared to the control group. Regarding antioxidant defense, there was an increase in glutathione (GSH) and a decrease in superoxide dismutase (SOD) in the combined therapy group. A histological analysis showed reduced inflammatory infiltrate in the MC-treated groups and in the combination therapy group. There was an increase in the wound contraction rate in all treated groups when compared to the control group, proving that the proposed therapies are effective in the epithelial healing process. The results of this study demonstrate that the therapies in combination favor the tissue repair process more significantly than the therapies in isolation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA