Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 47(5): 1209-1222, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31506331

RESUMO

Due to cell-cycle dysregulation, many cancer cells contain more than the normal compliment of centrosomes, a state referred to as centrosome amplification (CA). CA can drive oncogenic phenotypes and indeed can cause cancer in flies and mammals. However, cells have to actively manage CA, often by centrosome clustering, in order to divide. Thus, CA is also an Achilles' Heel of cancer cells. In recent years, there have been many important studies identifying proteins required for the management of CA and it has been demonstrated that disruption of some of these proteins can cause cancer-specific inhibition of cell growth. For certain targets therapeutically relevant interventions are being investigated, for example, small molecule inhibitors, although none are yet in clinical trials. As the field is now poised to move towards clinically relevant interventions, it is opportune to summarise the key work in targeting CA thus far, with particular emphasis on recent developments where small molecule or other strategies have been proposed. We also highlight the relatively unexplored paradigm of reversing CA, and thus its oncogenic effects, for therapeutic gain.


Assuntos
Centrossomo , Neoplasias/genética , Animais , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Oncogenes , Proteínas/metabolismo
2.
J Appl Clin Med Phys ; 20(3): 45-55, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30724011

RESUMO

There is an increasing need to develop methods for in vivo verification of the delivery of radiotherapy treatments. Electronic portal imaging devices (EPID's) have been demonstrated to be of use for this application. The basic principle is relatively straightforward, the EPID is used to measure a two-dimensional (2D) planar exit or portal dose map behind the patient during the treatment delivery that can provide information on any errors in linear accelerator output or changes in the patient anatomy. In this paper we focused on the effect of intra-fraction motion, particularly respiratory motion, on the measured 2D EPID dose-response. Measurements were made with a breast phantom undergoing one-dimensional (1D) sinusoidal motion with a range of amplitudes (0.5, 1.0, and 1.5 cm) and frequencies (12, 15, and 20  cycles/min). Further measurements were made with the phantom undergoing breathing sequences measured during patient planning computed tomography simulation. We made use of the quadratic calibration method that converts the EPID images to a surrogate for dose, equivalent thickness of Plastic Water® . Comparisons were made of the 2D thickness maps derived for the different motions compared to the static phantom case and the resulting dose difference analyzed over the "breast" region of interest. A 2D gamma analysis within the same region of interest was performed of the motion images compared to static reference image. Comparisons were made of 1D thickness profiles for the moving and static phantom. The 1D and 2D analyses show the method to be sensitive to the smallest motion amplitude of 0.5 cm tested in the phantom measurements. The results using the phantom demonstrate the method to be a potentially useful tool for monitoring intra-fraction motion during the delivery of patient radiotherapy treatments as well as more generally providing information on the effects of motion on EPID based in vivo dosimetric verification.


Assuntos
Mama/diagnóstico por imagem , Equipamentos e Provisões Elétricas , Imagens de Fantasmas , Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Respiração , Feminino , Humanos , Dosagem Radioterapêutica
3.
J Biol Chem ; 292(33): 13645-13657, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28667013

RESUMO

CYP121, the cytochrome P450 enzyme in Mycobacterium tuberculosis that catalyzes a single intramolecular C-C cross-linking reaction in the biosynthesis of mycocyclosin, is crucial for the viability of this pathogen. This C-C coupling reaction represents an expansion of the activities carried out by P450 enzymes distinct from oxygen insertion. Although the traditional mechanism for P450 enzymes has been well studied, it is unclear whether CYP121 follows the general P450 mechanism or uses a different catalytic strategy for generating an iron-bound oxidant. To gain mechanistic insight into the CYP121-catalyzed reaction, we tested the peroxide shunt pathway by using rapid kinetic techniques to monitor the enzyme activity with its substrate dicyclotyrosine (cYY) and observed the formation of the cross-linked product mycocyclosin by LC-MS. In stopped-flow experiments, we observed that cYY binding to CYP121 proceeds in a two-step process, and EPR spectroscopy indicates that the binding induces active site reorganization and uniformity. Using rapid freeze-quenching EPR, we observed the formation of a high-spin intermediate upon the addition of peracetic acid to the enzyme-substrate complex. This intermediate exhibits a high-spin (S = 5/2) signal with g values of 2.00, 5.77, and 6.87. Likewise, iodosylbenzene could also produce mycocyclosin, implicating compound I as the initial oxidizing species. Moreover, we also demonstrated that CYP121 performs a standard peroxidase type of reaction by observing substrate-based radicals. On the basis of these results, we propose plausible free radical-based mechanisms for the C-C bond coupling reaction.


Assuntos
Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Dipeptídeos/metabolismo , Mycobacterium tuberculosis/enzimologia , Peptídeos Cíclicos/metabolismo , Tirosina/análogos & derivados , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Dicetopiperazinas/química , Dicetopiperazinas/metabolismo , Dipeptídeos/química , Espectroscopia de Ressonância de Spin Eletrônica , Iodobenzenos/farmacologia , Cinética , Ligantes , Espectrometria de Massas , Estrutura Molecular , Oxidantes/farmacologia , Oxirredução , Peptídeos Cíclicos/química , Ácido Peracético/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrofotometria , Especificidade por Substrato , Tirosina/química , Tirosina/metabolismo
4.
J Am Chem Soc ; 139(48): 17484-17499, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29090577

RESUMO

CYP121 is a cytochrome P450 enzyme from Mycobacterium tuberculosis that catalyzes the formation of a C-C bond between the aromatic groups of its cyclodityrosine substrate (cYY). The crystal structure of CYP121 in complex with cYY reveals that the solvent-derived ligand remains bound to the ferric ion in the enzyme-substrate complex. Whereas in the generally accepted P450 mechanism, binding of the primary substrate in the active-site triggers the release of the solvent-derived ligand, priming the metal center for reduction and subsequent O2 binding. Here we employed sodium cyanide to probe the metal-ligand exchange of the enzyme and the enzyme-substrate complex. The cyano adducts were characterized by UV-vis, EPR, and ENDOR spectroscopies and X-ray crystallography. A 100-fold increase in the affinity of cyanide binding to the enzyme-substrate complex over the ligand-free enzyme was observed. The crystal structure of the [CYP121(cYY)CN] ternary complex showed a rearrangement of the substrate in the active-site, when compared to the structure of the binary [CYP121(cYY)] complex. Transient kinetic studies showed that cYY binding resulted in a lower second-order rate constant (kon (CN)) but a much more stable cyanide adduct with 3 orders of magnitude slower koff (CN) rate. A dynamic equilibrium between multiple high- and low-spin species for both the enzyme and enzyme-substrate complex was also observed, which is sensitive to changes in both pH and temperature. Our data reveal the chemical and physical properties of the solvent-derived ligand of the enzyme, which will help to understand the initial steps of the catalytic mechanism.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Heme/química , Heme/metabolismo , Mycobacterium tuberculosis/enzimologia , Temperatura , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Cinética , Ligantes , Cianeto de Sódio , Especificidade por Substrato
5.
Biochem Soc Trans ; 45(5): 1125-1136, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28900014

RESUMO

Post-translational modification of proteins by ubiquitylation is increasingly recognised as a highly complex code that contributes to the regulation of diverse cellular processes. In humans, a family of almost 100 deubiquitylase enzymes (DUBs) are assigned to six subfamilies and many of these DUBs can remove ubiquitin from proteins to reverse signals. Roles for individual DUBs have been delineated within specific cellular processes, including many that are dysregulated in diseases, particularly cancer. As potentially druggable enzymes, disease-associated DUBs are of increasing interest as pharmaceutical targets. The biology, structure and regulation of DUBs have been extensively reviewed elsewhere, so here we focus specifically on roles of DUBs in regulating cell cycle processes in mammalian cells. Over a quarter of all DUBs, representing four different families, have been shown to play roles either in the unidirectional progression of the cell cycle through specific checkpoints, or in the DNA damage response and repair pathways. We catalogue these roles and discuss specific examples. Centrosomes are the major microtubule nucleating centres within a cell and play a key role in forming the bipolar mitotic spindle required to accurately divide genetic material between daughter cells during cell division. To enable this mitotic role, centrosomes undergo a complex replication cycle that is intimately linked to the cell division cycle. Here, we also catalogue and discuss DUBs that have been linked to centrosome replication or function, including centrosome clustering, a mitotic survival strategy unique to cancer cells with supernumerary centrosomes.


Assuntos
Centrossomo/metabolismo , Enzimas Desubiquitinantes/química , Enzimas Desubiquitinantes/metabolismo , Animais , Ciclo Celular , Humanos , Família Multigênica , Neoplasias/enzimologia , Processamento de Proteína Pós-Traducional , Ubiquitinação
6.
Isr J Chem ; 56(9-10): 841-851, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27777444

RESUMO

We combine cryoreduction/annealing/EPR measurements of nitrogenase MoFe protein with results of earlier investigations to provide a detailed view of the electron/proton transfer events and conformational changes that occur during early stages of [e-/H+] accumulation by the MoFe protein. This includes reduction of (i) the non-catalytic state of the iron-molybdenum cofactor (FeMo-co) active site that is generated by chemical oxidation of the resting-state cofactor (S = 3/2)) within resting MoFe (E0), and (ii) the catalytic state that has accumulated n =1 [e-/H+] above the resting-state level, denoted E1(1H) (S ≥ 1) in the Lowe-Thorneley kinetic scheme. FeMo-co does not undergo a major change of conformation during reduction of oxidized FeMo-co. In contrast, FeMo-co undergoes substantial conformational changes during the reduction of E0 to E1(1H), and of E1(1H) to E2(2H) (n = 2; S = 3/2). The experimental results further suggest that the E1(1H) → E2(2H) step involves coupled delivery of a proton and electron (PCET) to FeMo-co of E1(H) to generate a non-equilibrium S = ½ form E2(2H)*. This subsequently undergoes conformational relaxation and attendant change in FeMo-co spin state, to generate the equilibrium E2(2H) (S = 3/2) state. Unexpectedly, these experiments also reveal conformational coupling between FeMo-co and P-cluster, and between Fe protein binding and FeMo-co, which might play a role in gated ET from reduced Fe protein to FeMo-co.

7.
Proc Natl Acad Sci U S A ; 109(17): 6572-7, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22493256

RESUMO

A long-standing paradigm in cell biology is the shutdown of endocytosis during mitosis. There is consensus that transferrin uptake is inhibited after entry into prophase and that it resumes in telophase. A recent study proposed that endocytosis is continuous throughout the cell cycle and that the observed inhibition of transferrin uptake is due to a decrease in available transferrin receptor at the cell surface, and not to a shutdown of endocytosis. This challenge to the established view is gradually becoming accepted. Because of this controversy, we revisited the question of endocytic activity during mitosis. Using an antibody uptake assay and controlling for potential changes in surface receptor density, we demonstrate the strong inhibition of endocytosis in mitosis of CD8 chimeras containing any of the three major internalization motifs for clathrin-mediated endocytosis (YXXΦ, [DE]XXXL[LI], or FXNPXY) or a CD8 protein with the cytoplasmic tail of the cation-independent mannose 6-phosphate receptor. The shutdown is not gradual: We describe a binary switch from endocytosis being "on" in interphase to "off" in mitosis as cells traverse the G(2)/M checkpoint. In addition, we show that the inhibition of transferrin uptake in mitosis occurs despite abundant transferrin receptor at the surface of HeLa cells. Our study finds no support for the recent idea that endocytosis continues during mitosis, and we conclude that endocytosis is temporarily shutdown during early mitosis.


Assuntos
Clatrina/fisiologia , Endocitose/fisiologia , Mitose/fisiologia , Citometria de Fluxo , Imunofluorescência , Células HeLa , Humanos , Microscopia de Fluorescência , Receptores da Transferrina/metabolismo
8.
J Biol Inorg Chem ; 19(4-5): 491-504, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24615282

RESUMO

Extradiol-cleaving catechol dioxygenases function by binding both the organic substrate and O2 at a divalent metal center in the active site. They have proven to be a particularly versatile group of enzymes with which to study the O2 activation process. Here, recent studies of homoprotocatechuate 2,3-dioxygenase are summarized, showing how nature can utilize the enzyme structure and the properties of the metal and the substrate to select among many possible chemical paths to achieve both specificity and efficiency. Possible intermediates in the mechanism have been trapped by swapping active-site metals, introducing active-site amino acid substituted variants, and using substrates with different electron-donating capacities. Although each of these intermediates could form part of a viable reaction pathway, kinetic measurements significantly limit the likely candidates. Structural, kinetic, spectroscopic, and computational analyses of the various intermediates shed light on how catalytic efficiency can be achieved.


Assuntos
Oxigenases/metabolismo , Sítios de Ligação , Catálise , Cristalografia por Raios X , Dioxigenases/química , Dioxigenases/metabolismo , Cinética , Modelos Moleculares , Oxigenases/química
9.
Cell Mol Life Sci ; 70(18): 3423-33, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23307073

RESUMO

Endocytosis and mitosis are fundamental processes in a cell's life. Nearly 50 years of research suggest that these processes are linked and that endocytosis is shut down as cells undergo the early stages of mitosis. Precisely how this occurs at the molecular level is an open question. In this review, we summarize the early work characterizing the inhibition of clathrin-mediated endocytosis and discuss recent challenges to this established concept. We also set out four proposed mechanisms for the inhibition: mitotic phosphorylation of endocytic proteins, altered membrane tension, moonlighting of endocytic proteins, and a mitotic spindle-dependent mechanism. Finally, we speculate on the functional consequences of endocytic shutdown during mitosis and where an understanding of the mechanism of inhibition will lead us in the future.


Assuntos
Clatrina/metabolismo , Endocitose , Mitose , Animais , Transporte Biológico , Ciclo Celular , Divisão Celular , Membrana Celular/metabolismo , Humanos , Camundongos , Microtúbulos/metabolismo , Fosforilação , Fuso Acromático/metabolismo , Transferrina/metabolismo
10.
J Am Chem Soc ; 135(17): 6438-41, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23594282

RESUMO

Hydrocarbon oxidations by bio-inspired nonheme iron catalysts and H2O2 have been proposed to involve an Fe(III)-OOH intermediate that decays via a water-assisted mechanism to form an Fe(V)(O)(OH) oxidant. Herein we report kinetic evidence for this pathway in the oxidation of 1-octene catalyzed by [Fe(II)(TPA)(NCCH3)](2+) (1, TPA = tris(2-pyridylmethyl)amine). The (TPA)Fe(III)(OOH) intermediate 2 can be observed at -40 °C and is found to undergo first-order decay, which is accelerated by water. Interestingly, the decay rate of 2 is comparable to that of product formation, indicating that the decay of 2 results in olefin oxidation. Furthermore, the Eyring activation parameters for the decay of 2 and product formation are identical, and both processes are associated with an H2O/D2O KIE of 2.5. Taken together with previous (18)O-labeling data, these results point to a water-assisted heterolytic O-O bond cleavage of 2 as the rate-limiting step in olefin oxidation.


Assuntos
Compostos Férricos/química , Ferroproteínas não Heme/química , Oxigênio/química , Água/química , Alcenos/química , Ligação de Hidrogênio , Indicadores e Reagentes , Cinética , Metilaminas , Oxirredução , Isótopos de Oxigênio/química , Espectrofotometria Ultravioleta
11.
PLoS One ; 18(2): e0280765, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36730280

RESUMO

Computed tomography (CT) derived Monte Carlo (MC) phantoms allow dose determination within small animal models that is not feasible with in-vivo dosimetry. The aim of this study was to develop a CT-derived MC phantom generated from a mouse with a xenograft tumour that could then be used to calculate both the dose heterogeneity in the tumour volume and out of field scattered dose for pre-clinical small animal irradiation experiments. A BEAMnrc Monte-Carlo model has been built of our irradiation system that comprises a lead collimator with a 1 cm diameter aperture fitted to a Cs-137 gamma irradiator. The MC model of the irradiation system was validated by comparing the calculated dose results with dosimetric film measurement in a polymethyl methacrylate (PMMA) phantom using a 1D gamma-index analysis. Dose distributions in the MC mouse phantom were calculated and visualized on the CT-image data. Dose volume histograms (DVHs) were generated for the tumour and organs at risk (OARs). The effect of the xenographic tumour volume on the scattered out of field dose was also investigated. The defined gamma index analysis criteria were met, indicating that our MC simulation is a valid model for MC mouse phantom dose calculations. MC dose calculations showed a maximum out of field dose to the mouse of 7% of Dmax. Absorbed dose to the tumour varies in the range 60%-100% of Dmax. DVH analysis demonstrated that tumour received an inhomogeneous dose of 12 Gy-20 Gy (for 20 Gy prescribed dose) while out of field doses to all OARs were minimized (1.29 Gy-1.38 Gy). Variation of the xenographic tumour volume exhibited no significant effect on the out of field scattered dose to OARs. The CT derived MC mouse model presented here is a useful tool for tumour dose verifications as well as investigating the doses to normal tissue (in out of field) for preclinical radiobiological research.


Assuntos
Radioisótopos de Césio , Neoplasias , Humanos , Animais , Camundongos , Dosagem Radioterapêutica , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Imagens de Fantasmas
12.
Biochemistry ; 51(29): 5811-21, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22746257

RESUMO

The previously reported crystal structures of α-amino-ß-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) show a five-coordinate Zn(II)(His)(3)(Asp)(OH(2)) active site. The water ligand is H-bonded to a conserved His228 residue adjacent to the metal center in ACMSD from Pseudomonas fluorescens (PfACMSD). Site-directed mutagenesis of His228 to tyrosine and glycine in this study results in a complete or significant loss of activity. Metal analysis shows that H228Y and H228G contain iron rather than zinc, indicating that this residue plays a role in the metal selectivity of the protein. As-isolated H228Y displays a blue color, which is not seen in wild-type ACMSD. Quinone staining and resonance Raman analyses indicate that the blue color originates from Fe(III)-tyrosinate ligand-to-metal charge transfer. Co(II)-substituted H228Y ACMSD is brown in color and exhibits an electron paramagnetic resonance spectrum showing a high-spin Co(II) center with a well-resolved (59)Co (I = 7/2) eight-line hyperfine splitting pattern. The X-ray crystal structures of as-isolated Fe-H228Y (2.8 Å) and Co-substituted (2.4 Å) and Zn-substituted H228Y (2.0 Å resolution) support the spectroscopic assignment of metal ligation of the Tyr228 residue. The crystal structure of Zn-H228G (2.6 Å) was also determined. These four structures show that the water ligand present in WT Zn-ACMSD is either missing (Fe-H228Y, Co-H228Y, and Zn-H228G) or disrupted (Zn-H228Y) in response to the His228 mutation. Together, these results highlight the importance of His228 for PfACMSD's metal specificity as well as maintaining a water molecule as a ligand of the metal center. His228 is thus proposed to play a role in activating the metal-bound water ligand for subsequent nucleophilic attack on the substrate.


Assuntos
Carboxiliases/genética , Carboxiliases/metabolismo , Histidina/genética , Histidina/metabolismo , Pseudomonas fluorescens/enzimologia , Pseudomonas fluorescens/genética , Carboxiliases/química , Domínio Catalítico , Cristalografia por Raios X , Di-Hidroxifenilalanina/metabolismo , Compostos Férricos/química , Compostos Férricos/metabolismo , Histidina/química , Metais/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação Puntual , Pseudomonas fluorescens/química , Especificidade por Substrato
13.
J Am Chem Soc ; 134(2): 796-9, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22175783

RESUMO

The first example of an O(2) adduct of an active Co-substituted oxygenase has been observed in the extradiol ring cleavage of the electron-poor substrate 4-nitrocatechol (4NC) by Co(II)-homoprotocatechuate 2,3-dioxygenase (Co-HPCD). Upon O(2) binding to the high-spin Co(II) (S = (3)/(2)) enzyme-substrate complex, an S = (1)/(2) EPR signal exhibiting (59)Co hyperfine splitting (A = 24 G) typical of a low-spin Co(III)-superoxide complex was observed. Both the formation and decay of the new intermediate are very slow in comparison to the analogous steps for turnover of 4NC by native high-spin Fe(II)-HPCD, which is likely to remain high-spin upon O(2) binding. A similar but effectively stable S = (1)/(2) intermediate was formed by the inactive [H200N-Co-HPCD(4NC)] variant. The observations presented shed light on the key roles played by the substrate, the second-sphere His200 residue, and the spin state of the metal center in facilitating O(2) binding and activation.


Assuntos
Cobalto/química , Dioxigenases/química , Dioxigenases/metabolismo , Oxigênio/metabolismo , Catecóis/química , Catecóis/metabolismo , Dioxigenases/genética , Ferro/química , Cinética , Estrutura Molecular , Mutação , Oxigênio/química
14.
J Appl Clin Med Phys ; 13(5): 3271, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-22955638

RESUMO

There is a growing interest in the use of megavoltage cone-beam computed tomography (MV CBCT) data for radiotherapy treatment planning. To calculate accurate dose distributions, knowledge of the electron density (ED) of the tissues being irradiated is required. In the case of MV CBCT, it is necessary to determine a calibration-relating CT number to ED, utilizing the photon beam produced for MV CBCT. A number of different parameters can affect this calibration. This study was undertaken on the Siemens MV CBCT system, MVision, to evaluate the effect of the following parameters on the reconstructed CT pixel value to ED calibration: the number of monitor units (MUs) used (5, 8, 15 and 60 MUs), the image reconstruction filter (head and neck, and pelvis), reconstruction matrix size (256 by 256 and 512 by 512), and the addition of extra solid water surrounding the ED phantom. A Gammex electron density CT phantom containing EDs from 0.292 to 1.707 was imaged under each of these conditions. The linear relationship between MV CBCT pixel value and ED was demonstrated for all MU settings and over the range of EDs. Changes in MU number did not dramatically alter the MV CBCT ED calibration. The use of different reconstruction filters was found to affect the MV CBCT ED calibration, as was the addition of solid water surrounding the phantom. Dose distributions from treatment plans calculated with simulated image data from a 15 MU head and neck reconstruction filter MV CBCT image and a MV CBCT ED calibration curve from the image data parameters and a 15 MU pelvis reconstruction filter showed small and clinically insignificant differences. Thus, the use of a single MV CBCT ED calibration curve is unlikely to result in any clinical differences. However, to ensure minimal uncertainties in dose reporting, MV CBCT ED calibration measurements could be carried out using parameter-specific calibration measurements.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Elétrons , Planejamento da Radioterapia Assistida por Computador , Calibragem , Cabeça/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Pescoço/diagnóstico por imagem , Pelve/diagnóstico por imagem , Imagens de Fantasmas , Dosagem Radioterapêutica , Software
15.
Biomed Phys Eng Express ; 8(3)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34715689

RESUMO

Purpose. The aim of this study was to assess the feasibility of the development and training of a deep learning object detection model for automating the assessment of fiducial marker migration and tracking of the prostate in radiotherapy patients.Methods and Materials. A fiducial marker detection model was trained on the YOLO v2 detection framework using approximately 20,000 pelvis kV projection images with fiducial markers labelled. The ability of the trained model to detect marker positions was validated by tracking the motion of markers in a respiratory phantom and comparing detection data with the expected displacement from a reference position. Marker migration was then assessed in 14 prostate radiotherapy patients using the detector for comparison with previously conducted studies. This was done by determining variations in intermarker distance between the first and subsequent fractions in each patient.Results. On completion of training, a detection model was developed that operated at a 96% detection efficacy and with a root mean square error of 0.3 pixels. By determining the displacement from a reference position in a respiratory phantom, experimentally and with the detector it was found that the detector was able to compute displacements with a mean accuracy of 97.8% when compared to the actual values. Interfraction marker migration was measured in 14 patients and the average and maximum±standard deviation marker migration were found to be2.0±0.9mmand2.3±0.9mm,respectively.Conclusion. This study demonstrates the benefits of pairing deep learning object detection, and image-guided radiotherapy and how a workflow to automate the assessment of organ motion and seed migration during prostate radiotherapy can be developed. The high detection efficacy and low error make evident the advantages of using a pre-trained model to automate the assessment of the target volume positional variation and the migration of fiducial markers between fractions.


Assuntos
Aprendizado Profundo , Neoplasias da Próstata , Estudos de Viabilidade , Marcadores Fiduciais , Humanos , Masculino , Próstata/diagnóstico por imagem , Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Neoplasias da Próstata/radioterapia
16.
J Med Phys ; 47(3): 235-242, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684698

RESUMO

Aim: The aim of this study was to compare the Exradin W2 scintillator, PTW microDiamond, IBA Razor Nano, and IBA Razor chamber detectors for small-field dose measurements and validate the measured data against the EGSnrc user code and observe the variation between daisy-chained and direct measurement methods for the above detectors. Materials and Methods: The W2 scintillator, microDiamond, Razor Nano, and Razor chamber detectors were used to measure the in-plane and cross-plane profiles and the output factors (OFs) at 10 cm depth, and 90 source-to-surface distance for 6MV X-rays (Elekta Versa HD). The field sizes ranged from 0.5 cm × 0.5 cm to 5 cm × 5 cm. The BEAMnrc/DOSXYZnrc user codes (EGSnrc) were used to simulate the reference profiles. Gamma analysis was performed to compare the measured and simulated dose distributions. Results: The OFs measured with the W2 scintillator, microDiamond, Razor Nano chamber, Razor chamber, and the calculated Monte Carlo (MC) showed agreement to within 1% for the 3 cm × 3 cm field size. The uncertainty in the MC simulation was observed to be 0.4%. The percent difference in OFs measured using daisy-chained and direct measurement methods was within 0.15%, 0.4%, 1.4%, and 2.4% for microDiamond, W2 scintillator, Nano, and Razor chamber detectors, respectively. Conclusion: The lateral beam profiles and OFs of W2 scintillator, microDiamond, Razor Nano, and Razor chambers exhibit good agreement with the MC simulation within the nominal field sizes. Our results demonstrate that we can achieve considerable time-saving by directly measuring small-field OFs without daisy-chained methods using microDiamond and W2 scintillator. In terms of ease of use, sensitivity, reproducibility, and from a practical standpoint, we recommend microDiamond for small-field dosimetry.

17.
J Pathol Clin Res ; 8(4): 383-394, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35474453

RESUMO

Uveal melanoma (UM) is the most common intraocular cancer in adults. Whilst treatment of primary UM (PUM) is often successful, around 50% of patients develop metastatic disease with poor outcomes, linked to chromosome 3 loss (monosomy 3, M3). Advances in understanding UM cell biology may indicate new therapeutic options. We report that UM exhibits centrosome abnormalities, which in other cancers are associated with increased invasiveness and worse prognosis, but also represent a potential Achilles' heel for cancer-specific therapeutics. Analysis of 75 PUM patient samples revealed both higher centrosome numbers and an increase in centrosomes with enlarged pericentriolar matrix (PCM) compared to surrounding normal tissue, both indicative of centrosome amplification. The PCM phenotype was significantly associated with M3 (t-test, p < 0.01). Centrosomes naturally enlarge as cells approach mitosis; however, whilst UM with higher mitotic scores had enlarged PCM regardless of genetic status, the PCM phenotype remained significantly associated with M3 in UM with low mitotic scores (ANOVA, p = 0.021) suggesting that this is independent of proliferation. Phenotypic analysis of patient-derived cultures and established UM lines revealed comparable levels of centrosome amplification in PUM cells to archetypal triple-negative breast cancer cell lines, whilst metastatic UM (MUM) cell lines had even higher levels. Importantly, many UM cells also exhibit centrosome clustering, a common strategy employed by other cancer cells with centrosome amplification to survive cell division. As UM samples with M3 display centrosome abnormalities indicative of amplification, this phenotype may contribute to the development of MUM, suggesting that centrosome de-clustering drugs may provide a novel therapeutic approach.


Assuntos
Melanoma , Neoplasias Uveais , Centrossomo/metabolismo , Centrossomo/patologia , Humanos , Melanoma/genética , Melanoma/patologia , Prognóstico , Neoplasias Uveais/genética , Neoplasias Uveais/patologia
18.
J Biol Inorg Chem ; 16(2): 341-55, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21153851

RESUMO

Homoprotocatechuate 2,3-dioxygenase from Brevibacterium fuscum (HPCD) has an Fe(II) center in its active site that can be replaced with Mn(II) or Co(II). Whereas Mn-HPCD exhibits steady-state kinetic parameters comparable to those of Fe-HPCD, Co-HPCD behaves somewhat differently, exhibiting significantly higher [Formula: see text] and k (cat). The high activity of Co-HPCD is surprising, given that cobalt has the highest standard M(III/II) redox potential of the three metals. Comparison of the X-ray crystal structures of the resting and substrate-bound forms of Fe-HPCD, Mn-HPCD, and Co-HPCD shows that metal substitution has no effect on the local ligand environment, the conformational integrity of the active site, or the overall protein structure, suggesting that the protein structure does not differentially tune the potential of the metal center. Analysis of the steady-state kinetics of Co-HPCD suggests that the Co(II) center alters the relative rate constants for the interconversion of intermediates in the catalytic cycle but still allows the dioxygenase reaction to proceed efficiently. When compared with the kinetic data for Fe-HPCD and Mn-HPCD, these results show that dioxygenase catalysis can proceed at high rates over a wide range of metal redox potentials. This is consistent with the proposed mechanism in which the metal mediates electron transfer between the catechol substrate and O(2) to form the postulated [M(II)(semiquinone)superoxo] reactive species. These kinetic differences and the spectroscopic properties of Co-HPCD provide new tools with which to explore the unique O(2) activation mechanism associated with the extradiol dioxygenase family.


Assuntos
Cobalto/metabolismo , Dioxigenases/metabolismo , Brevibacterium/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Dioxigenases/química , Espectroscopia de Ressonância de Spin Eletrônica , Ferro/metabolismo , Manganês/metabolismo , Ligação Proteica
19.
J Med Phys ; 46(2): 80-87, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566287

RESUMO

PURPOSE: Fiducial marker seeds are often used as a surrogate to identify and track the positioning of prostate volume in the treatment of prostate cancer. Tracking the movement of prostate seeds aids in minimizing the prescription dose spillage outside the target volume to reduce normal tissue complications. In this study, You Only Look Once (YOLO) v2™ (MathWorks™) convolutional neural network was employed to train ground truth datasets and develop a program in MATLAB that can visualize and detect the seeds on projection images obtained from kilovoltage (kV) X-ray volume imaging (XVI) panel (Elekta™). METHODS: As a proof of concept, a wax phantom containing three gold marker seeds was imaged, and kV XVI seed images were labeled and used as ground truth to train the model. The projection images were corrected for any panel shift using flex map data. Upon successful testing, labeled marker seeds and projection images of three patients were used to train a model to detect fiducial marker seeds. A software program was developed to display the projection images in real-time and predict the seeds using YOLO v2 and determine the centers of the marker seeds on each image. RESULTS: The fiducial marker seeds were successfully detected in 98% of images from all gantry angles; the variation in the position of the seed center was within ± 1 mm. The percentage difference between the ground truth and the detected seeds was within 3%. CONCLUSION: Our study shows that deep learning can be used to detect fiducial marker seeds in kV images in real time. This is an ongoing study, and work is underway to extend it to other sites for tracking moving structures with minimal effort.

20.
Cancers (Basel) ; 13(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34830869

RESUMO

Breast cancer is a leading cause of cancer-associated death in women. The clinical management of breast cancers is normally carried out using a combination of chemotherapy, surgery and radiation therapy. The majority of research investigating breast cancer therapy until now has mainly utilized two-dimensional (2D) in vitro cultures or murine models of disease. However, there has been significant uptake of three-dimensional (3D) in vitro models by cancer researchers over the past decade, highlighting a complimentary model for studies of radiotherapy, especially in conjunction with chemotherapy. In this review, we underline the effects of radiation therapy on normal and malignant breast cells and tissues, and explore the emerging opportunities that pre-clinical 3D models offer in improving our understanding of this treatment modality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA