Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 31(5): 2466-2481, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33350451

RESUMO

Normal aging causes disruptions in the brain that can lead to cognitive decline. Resting-state functional magnetic resonance imaging studies have found significant age-related alterations in functional connectivity across various networks. Nevertheless, most of the studies have focused mainly on static functional connectivity. Studying the dynamics of resting-state brain activity across the whole-brain functional network can provide a better characterization of age-related changes. Here, we employed two data-driven whole-brain approaches based on the phase synchronization of blood-oxygen-level-dependent signals to analyze resting-state fMRI data from 620 subjects divided into two groups (middle-age group (n = 310); age range, 50-64 years versus older group (n = 310); age range, 65-91 years). Applying the intrinsic-ignition framework to assess the effect of spontaneous local activation events on local-global integration, we found that the older group showed higher intrinsic ignition across the whole-brain functional network, but lower metastability. Using Leading Eigenvector Dynamics Analysis, we found that the older group showed reduced ability to access a metastable substate that closely overlaps with the so-called rich club. These findings suggest that functional whole-brain dynamics are altered in aging, probably due to a deficiency in a metastable substate that is key for efficient global communication in the brain.


Assuntos
Envelhecimento/fisiologia , Encéfalo/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Encéfalo/fisiologia , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia
2.
Mult Scler ; 27(8): 1284-1292, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32976067

RESUMO

BACKGROUND: Longitudinal studies assessing depression and anxiety effects on cognition in multiple sclerosis (MS) are limited. OBJECTIVE: We tested whether within-person fluctuations in symptoms of depression or anxiety over time affect cognition in persons with MS, inflammatory bowel disease (IBD), rheumatoid arthritis (RA), and a lifetime history of depression/anxiety disorders (DEP/ANX) but without an immune-mediated inflammatory diseases (IMID). METHODS: We followed participants (MS: 255, IBD: 247, RA: 154, and DEP/ANX: 306) for 3 years. Annually, they completed the hospital anxiety and depression scale (HADS) and cognitive tests including the symbol digit modalities test (SDMT). We evaluated associations of elevated symptoms (scores ⩾ 11) of anxiety (HADS-A) and depression (HADS-D) with SDMT z-scores using multivariable linear models-estimating between-person and within-person effects. RESULTS: Participants with MS performed worse on the SDMT than participants in the DEP/ANX cohort (ß = -0.68; 95% CI: -0.88, -0.48). Participants with elevated HADS-A scores performed worse on the SDMT than those without elevated scores (ß = -0.43; 95% CI: -0.65, -0.21), particularly those with RA. Time-varying within-person elevations in depressive symptoms were associated with worse SDMT performance (ß = -0.12; 95% CI: -0.21, -0.021). CONCLUSIONS: Across persons, elevated symptoms of anxiety adversely affected information processing. Elevated symptoms of depression within-persons over time were associated with declines in information processing speed.


Assuntos
Depressão , Esclerose Múltipla , Ansiedade , Transtornos de Ansiedade , Humanos , Esclerose Múltipla/complicações , Testes Neuropsicológicos
3.
Stroke ; 49(10): 2353-2360, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30355087

RESUMO

Background and Purpose- Physiological effects of stroke are best assessed over entire brain networks rather than just focally at the site of structural damage. Resting-state functional magnetic resonance imaging can map functional-anatomic networks by analyzing spontaneously correlated low-frequency activity fluctuations across the brain, but its potential usefulness in predicting functional outcome after acute stroke remains unknown. We assessed the ability of resting-state functional magnetic resonance imaging to predict functional outcome after acute stroke. Methods- We scanned 37 consecutive reperfused stroke patients (age, 69±14 years; 14 females; 3-day National Institutes of Health Stroke Scale score, 6±5) on day 3 after symptom onset. After imaging preprocessing, we used a whole-brain mask to calculate the correlation coefficient matrices for every paired region using the Harvard-Oxford probabilistic atlas. To evaluate functional outcome, we applied the modified Rankin Scale at 90 days. We used region of interest analyses to explore the functional connectivity between regions and graph-computation analysis to detect differences in functional connectivity between patients with good functional outcome (modified Rankin Scale score ≤2) and those with poor outcome (modified Rankin Scale score >2). Results- Patients with good outcome had greater functional connectivity than patients with poor outcome. Although 3-day National Institutes of Health Stroke Scale score was the most accurate independent predictor of 90-day modified Rankin Scale (84.2%), adding functional connectivity increased accuracy to 94.7%. Preserved bilateral interhemispheric connectivity between the anterior inferior temporal gyrus and superior frontal gyrus and decreased connectivity between the caudate and anterior inferior temporal gyrus in the left hemisphere had the greatest impact in favoring good prognosis. Conclusions- These data suggest that information about functional connectivity from resting-state functional magnetic resonance imaging may help predict 90-day stroke outcome.


Assuntos
Isquemia Encefálica/fisiopatologia , Encéfalo/patologia , Vias Neurais/patologia , Acidente Vascular Cerebral/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Encéfalo/fisiopatologia , Isquemia Encefálica/diagnóstico por imagem , Feminino , Lateralidade Funcional/fisiologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/diagnóstico por imagem
4.
NMR Biomed ; 31(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29315894

RESUMO

Given the growing popularity of T1 -weighted/T2 -weighted (T1 w/T2 w) ratio measurements, the objective of the current study was to evaluate the concordance between T1 w/T2 w ratios obtained using conventional fast spin echo (FSE) versus combined gradient and spin echo (GRASE) sequences for T2 w image acquisition, and to compare the resulting T1 w/T2 w ratios with histologically validated myelin water fraction (MWF) measurements in several subcortical brain structures. In order to compare these measurements across a relatively wide range of myelin concentrations, whole-brain T1 w magnetization prepared rapid acquisition gradient echo (MPRAGE), T2 w FSE and three-dimensional multi-echo GRASE data were acquired from 10 participants with multiple sclerosis at 3 T. Then, after high-dimensional, non-linear warping, region of interest (ROI) analyses were performed to compare T1 w/T2 w ratios and MWF estimates (across participants and brain regions) in 11 bilateral white matter (WM) and four bilateral subcortical grey matter (SGM) structures extracted from the JHU_MNI_SS 'Eve' atlas. Although the GRASE sequence systematically underestimated T1 w/T2 w values compared to the FSE sequence (revealed by Bland-Altman and mountain plots), linear regressions across participants and ROIs revealed consistently high correlations between the two methods (r2 = 0.62 for all ROIs, r2 = 0.62 for WM structures and r2 = 0.73 for SGM structures). However, correlations between either FSE-based or GRASE-based T1 w/T2 w ratios and MWFs were extremely low in WM structures (FSE-based, r2 = 0.000020; GRASE-based, r2 = 0.0014), low across all ROIs (FSE-based, r2 = 0.053; GRASE-based, r2 = 0.029) and moderate in SGM structures (FSE-based, r2 = 0.20; GRASE-based, r2 = 0.17). Overall, our findings indicated a high degree of correlation (but not equivalence) between FSE-based and GRASE-based T1 w/T2 w ratios, and low correlations between T1 w/T2 w ratios and MWFs. This suggests that the two T1 w/T2 w ratio approaches measure similar facets of subcortical tissue microstructure, whereas T1 w/T2 w ratios and MWFs appear to be sensitized to different microstructural properties. On this basis, we conclude that multi-echo GRASE sequences can be used in future studies to efficiently elucidate both general (T1 w/T2 w ratio) and myelin-specific (MWF) tissue characteristics.


Assuntos
Córtex Cerebral/anatomia & histologia , Imageamento por Ressonância Magnética , Bainha de Mielina/metabolismo , Marcadores de Spin , Água/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
Mult Scler ; 23(14): 1884-1892, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28178867

RESUMO

BACKGROUND: Recent studies utilizing perfusion as a surrogate of cortical integrity show promise for overall cognition, but the association between white matter (WM) damage and gray matter (GM) integrity in specific functional networks is not previously studied. OBJECTIVE: To investigate the relationship between WM fiber integrity and GM node perfusion within six functional networks of relapsing-remitting multiple sclerosis (RRMS) and secondary progressive multiple sclerosis (SPMS) patients. METHODS: Magnetic resonance imaging (MRI) and neurocognitive testing were performed on 19 healthy controls (HC), 39 RRMS, and 45 SPMS patients. WM damage extent and severity were quantified with T2-hyper/T1-hypointense (T2h/T1h) lesion volume and degree of perfusion reduction in lesional and normal-appearing white matter (NAWM), respectively. A two-step linear regression corrected for confounders was employed. RESULTS: Cognitive impairment was present in 20/39 (51%) RRMS and 25/45 (53%) SPMS patients. GM node perfusion was associated with WM fiber damage severity (WM hypoperfusion) within each network-including both NAWM ( R2 = 0.67-0.89, p < 0.0001) and T2h ( R2 = 0.39-0.62, p < 0.0001) WM regions-but was not significantly associated ( p > 0.01) with WM fiber damage extent (i.e. T2h/T1h lesion volumes). CONCLUSION: Overall, GM node perfusion was associated with severity rather than extent of WM network damage, supporting a primary etiology of GM hypoperfusion.


Assuntos
Disfunção Cognitiva/fisiopatologia , Substância Cinzenta/diagnóstico por imagem , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Disfunção Cognitiva/etiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/complicações , Esclerose Múltipla Recidivante-Remitente/complicações , Imagem de Perfusão , Índice de Gravidade de Doença
7.
J Sex Marital Ther ; 42(1): 36-47, 2016 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25635474

RESUMO

Using functional magnetic resonance imaging, the authors aimed to determine the roles of the human spinal cord in mediating sexual responses in women. Functional magnetic resonance imaging of the entire lower thoracic, lumbar, and sacral spinal cord was performed using a sexual stimulation paradigm designed to elicit psychological and physical components of sexual arousal. Responses were measured in 9 healthy adult women during 3 consecutive conditions: (a) erotic audiovisual, (b) manual clitoral, and (c) audiovisual plus manual stimulation. Functional magnetic resonance imaging results in healthy subjects demonstrate that this method is sensitive for mapping sexual function in the spinal cord, and identify several key regions involved in human sexual response, including the intermediolateral cell column, the dorsal commissural nucleus, and the sacral parasympathetic nucleus. Using spinal functional magnetic resonance imaging, this study identified many of the spinal cord regions involved in female sexual responses. Results from audiovisual and manual clitoral stimulation correspond with previous data regarding lumbar and sacral neurologic changes during sexual arousal. This study provides the first characterization of neural activity in the human spinal cord underlying healthy female sexual responses and sets a foundation for future studies aimed at mapping changes that result from sexual dysfunction, spinal cord trauma or disease.

8.
Neurosci Insights ; 19: 26331055231225657, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304550

RESUMO

Alzheimer's disease (AD) is the most common type of dementia, and AD individuals often present significant cerebrovascular disease (CVD) symptomology. AD with significant levels of CVD is frequently labeled mixed dementia (or sometimes AD-CVD), and the differentiation of these two neuropathologies (AD, AD-CVD) from each other is challenging, especially at early stages. In this study, we compared the gray matter (GM) and white matter (WM) volumes in AD (n = 83) and AD-CVD (n = 37) individuals compared with those of cognitively healthy controls (n = 85) using voxel-based morphometry (VBM) of their MRI scans. The control individuals, matched for age and sex with our two dementia groups, were taken from the ADNI. The VBM analysis showed widespread patterns of significantly lower GM and WM volume in both dementia groups compared to the control group (P < .05, family-wise error corrected). While comparing with AD-CVD, the AD group mainly demonstrated a trend of lower volumes in the GM of the left putamen and right hippocampus and WM of the right thalamus (uncorrected P < .005 with cluster threshold, K = 10). The AD-CVD group relative to AD tended to present lower GM and WM volumes, mainly in the cerebellar lobules and right brainstem regions, respectively (uncorrected P < .005 with cluster threshold, K = 10). Although finding a discriminatory feature in structural MRI data between AD and AD-CVD neuropathologies is challenging, these results provide preliminary evidence that demands further investigation in a larger sample size.

9.
Brain Sci ; 14(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38539615

RESUMO

This study is a post-hoc examination of baseline MRI data from a clinical trial investigating the efficacy of repetitive transcranial magnetic stimulation (rTMS) as a treatment for patients with mild-moderate Alzheimer's disease (AD). Herein, we investigated whether the analysis of baseline MRI data could predict the response of patients to rTMS treatment. Whole-brain T1-weighted MRI scans of 75 participants collected at baseline were analyzed. The analyses were run on the gray matter (GM) and white matter (WM) of the left and right dorsolateral prefrontal cortex (DLPFC), as that was the rTMS application site. The primary outcome measure was the Alzheimer's disease assessment scale-cognitive subscale (ADAS-Cog). The response to treatment was determined based on ADAS-Cog scores and secondary outcome measures. The analysis of covariance showed that responders to active treatment had a significantly lower baseline GM volume in the right DLPFC and a higher GM asymmetry index in the DLPFC region compared to those in non-responders. Logistic regression with a repeated five-fold cross-validated analysis using the MRI-driven features of the initial 75 participants provided a mean accuracy of 0.69 and an area under the receiver operating characteristic curve of 0.74 for separating responders and non-responders. The results suggest that GM volume or asymmetry in the target area of active rTMS treatment (DLPFC region in this study) may be a weak predictor of rTMS treatment efficacy. These results need more data to draw more robust conclusions.

10.
J Imaging ; 9(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38132686

RESUMO

Coronary artery disease is one of the leading causes of death worldwide, and medical imaging methods such as coronary artery computed tomography are vitally important in its detection. More recently, various computational approaches have been proposed to automatically extract important artery coronary features (e.g., vessel centerlines, cross-sectional areas along vessel branches, etc.) that may ultimately be able to assist with more accurate and timely diagnoses. The current study therefore validated and benchmarked a recently developed automated 3D centerline extraction method for coronary artery centerline tracking using synthetically segmented coronary artery models based on the widely used Rotterdam Coronary Artery Algorithm Evaluation Framework (RCAAEF) training dataset. Based on standard accuracy metrics and the ground truth centerlines of all 32 coronary vessel branches in the RCAAEF training dataset, this 3D divide and conquer Voronoi diagram method performed exceptionally well, achieving an average overlap accuracy (OV) of 99.97%, overlap until first error (OF) of 100%, overlap of the clinically relevant portion of the vessel (OT) of 99.98%, and an average error distance inside the vessels (AI) of only 0.13 mm. Accuracy was also found to be exceptionally for all four coronary artery sub-types, with average OV values of 99.99% for right coronary arteries, 100% for left anterior descending arteries, 99.96% for left circumflex arteries, and 100% for large side-branch vessels. These results validate that the proposed method can be employed to quickly, accurately, and automatically extract 3D centerlines from segmented coronary arteries, and indicate that it is likely worthy of further exploration given the importance of this topic.

11.
Front Hum Neurosci ; 17: 1196624, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484918

RESUMO

Background: The open-access UManitoba-JHU functionally defined human white matter (WM) atlas contains specific WM pathways and general WM regions underlying 12 functional brain networks in ICBM152 template space. However, it is not known whether any of these WM networks are disproportionately co-localized with periventricular and/or juxtacortical WM (PVWM and JCWM), which could potentially impact their ability to infer network-specific effects in future studies-particularly in patient populations expected to have disproportionate PVWM and/or JCWM damage. Methods: The current study therefore identified intersecting regions of PVWM and JCWM (defined as WM within 5 mm of the ventricular and cortical boundaries) and: (1) the ICBM152 global WM mask, and (2) all 12 UManitoba-JHU WM networks. Dice Similarity Coefficient (DSC), Jaccard Similarity Coefficient (JSC), and proportion of volume (POV) values between PVWM (and JCWM) and each functionally defined WM network were then compared to corresponding values between PVWM (and JCWM) and global WM. Results: Between the 12 WM networks and PVWM, 8 had lower DSC, JSC, and POV; 1 had lower DSC and JSC, but higher POV; and 3 had higher DSC, JSC, and POV compared to global WM. For JCWM, all 12 WM networks had lower DSC, JSC, and POV compared to global WM. Conclusion: The majority of UManitoba-JHU functionally defined WM networks exhibited lower than average spatial similarity with PVWM, and all exhibited lower than average spatial similarity with JCWM. This suggests that they can be used to explore network-specific WM changes, even in patient populations with known predispositions toward PVWM and/or JCWM damage.

12.
Arch Clin Neuropsychol ; 38(1): 139-153, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36064192

RESUMO

OBJECTIVE: Anti-leucine-rich glioma-inactivated 1 limbic encephalitis (LGI1-LE) is a rare autoimmune condition that affects the structural integrity and functioning of the brain's limbic system. Little is known about its impact on long-term neuropsychological functioning and the structural integrity of the medial temporal lobe. Here we examined the long-term neuropsychological and neuroanatomical outcomes of a 68-year-old male who acquired LGI1-LE. METHODS: Our case patient underwent standardized neuropsychological testing at two time points. Volumetric analyses of T1-weighted images were undertaken at four separate time points and qualitatively compared with a group of age-matched healthy controls. RESULTS: At the time of initial assessment, our case study exhibited focal impairments in verbal and visual episodic memory and these impairments continued to persist after undergoing a course of immunotherapy. Furthermore, in reference to an age-matched healthy control group, over the course of 11 months, volumetric brain imaging analyses revealed that areas of the medial temporal lobe including specific hippocampal subfields (e.g., CA1 and dentate gyrus) underwent a subacute period of volumetric enlargement followed by a chronic period of volumetric reduction in the same regions. CONCLUSIONS: In patients with persisting neurocognitive deficits, LGI1-LE may produce chronic volume loss in specific areas of the medial temporal lobe; however, this appears to follow a subacute period of volume enlargement possibly driven by neuro-inflammatory processes.


Assuntos
Encefalite Límbica , Memória Episódica , Masculino , Humanos , Lactente , Idoso , Encefalite Límbica/complicações , Encefalite Límbica/diagnóstico por imagem , Peptídeos e Proteínas de Sinalização Intracelular , Testes Neuropsicológicos , Neuroimagem , Imageamento por Ressonância Magnética
13.
Sci Rep ; 13(1): 4317, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922532

RESUMO

Reports of cognitive impairment in inflammatory bowel disease (IBD) have been mixed. IBD and cardiovascular disease are often co-morbid, yet it remains unknown whether vascular comorbidity confers a risk for decreased cognitive functioning, as observed in other populations. Participants with IBD were recruited from a longitudinal study of immune-mediated disease. Participants were administered a standardized neuropsychological test protocol, evaluating information processing speed, verbal learning and memory, visual learning and memory, and verbal fluency/executive function. Cognitive test scores were standardized using local regression-based norms, adjusting for age, sex, and education. Vascular risk was calculated using a modified Framingham Risk Score (FRS). We tested the association between FRS and cognitive test scores using a quantile regression model, adjusting for IBD type. Of 84 IBD participants, 54 had ulcerative colitis and 30 had Crohn's disease; mean (SD) age was 53.36 (13.95) years, and a high proportion were females (n = 58). As the risk score (FRS) increased, participants demonstrated lower performance in information processing speed (ß = - 0.12; 95% CI - 0.24, - 0.006) and verbal learning (ß = - 0.14; 95% CI - 0.28, - 0.01) at the 50th percentile. After adjusting for IBD type and disease activity, higher FRS remained associated with lower information processing speed (ß = - 0.14; 95% CI - 0.27, - 0.065). Vascular comorbidity is associated with lower cognitive functioning in persons with IBD, particularly in the area of information processing speed. These findings suggest that prevention, identification, and treatment of vascular comorbidity in IBD may play a critical role for improving functional outcomes in IBD.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Feminino , Humanos , Pessoa de Meia-Idade , Masculino , Estudos Longitudinais , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/epidemiologia , Cognição , Comorbidade , Colite Ulcerativa/epidemiologia
14.
Front Neurol ; 14: 1250894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928146

RESUMO

Background: Fifty-one percent of individuals with multiple sclerosis (MS) develop cognitive impairment (CI) in information processing speed (IPS). Although IPS scores are associated with health and well-being, neural changes that underlie IPS impairments in MS are not understood. Resting state fMRI can provide insight into brain function changes underlying impairment in persons with MS. Objectives: We aimed to assess functional connectivity (FC) differences in (i) persons with MS compared to healthy controls (HC), (ii) persons with both MS and CI (MS-CI) compared to HC, (iii) persons with MS that are cognitively preserved (MS-CP) compared to HC, (iv) MS-CI compared to MS-CP, and (v) in relation to cognition within the MS group. Methods: We included 107 participants with MS (age 49.5 ± 12.9, 82% women), and 94 controls (age 37.9 ± 15.4, 66% women). Each participant was administered the Symbol Digit Modalities Test (SDMT) and underwent a resting state fMRI scan. The MS-CI group was created by applying a z-score cut-off of ≤-1.5 to locally normalized SDMT scores. The MS-CP group was created by applying a z-score of ≥0. Control groups (HCMS-CI and HCMS-CP) were based on the nearest age-matched HC participants. A whole-brain ROI-to-ROI analysis was performed followed by specific contrasts and a regression analysis. Results: Individuals with MS showed FC differences compared to HC that involved the cerebellum, visual and language-associated brain regions, and the thalamus, hippocampus, and basal ganglia. The MS-CI showed FC differences compared to HCMS-CI that involved the cerebellum, visual and language-associated areas, thalamus, and caudate. SDMT scores were correlated with FC between the cerebellum and lateral occipital cortex in MS. No differences were observed between the MS-CP and HCMS-CP or MS-CI and MS-CP groups. Conclusion: Our findings emphasize FC changes of cerebellar, visual, and language-associated areas in persons with MS. These differences were apparent for (i) all MS participants compared to HC, (ii) MS-CI subgroup and their matched controls, and (iii) the association between FC and SDMT scores within the MS group. Our findings strongly suggest that future work that examines the associations between FC and IPS impairments in MS should focus on the involvement of these regions.

15.
Inflamm Bowel Dis ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740523

RESUMO

BACKGROUND: Vascular disease and cognitive impairment have been increasingly documented in inflammatory bowel disease (IBD), and both have been individually correlated with changes in brain structure. This study aimed to determine if both macro- and microstructural brain changes are prevalent in IBD and whether alterations in brain structure mediate the relationship between vascular disease and cognitive functioning. METHODS: Eighty-four IBD participants underwent multimodal magnetic resonance imaging. Volumetric and mean diffusivity measures of the thalamus, hippocampus, normal-appearing white matter, and white matter lesions were converted to age- and sex-adjusted z scores. Vascular comorbidity was assessed using a modified Framingham Risk Score and cognition was assessed using a battery of neuropsychological tests. Test scores were standardized using local regression-based norms. We generated summary statistics for the magnetic resonance imaging metrics and cognitive tests, and these were examined using canonical correlation analysis and linear regression modeling. RESULTS: Greater vascular comorbidity was negatively correlated with thalamic, normal-appearing white matter, and white matter lesion volumes. Higher Framingham Risk Score were also correlated with lower processing speed, learning and memory, and verbal fluency. Increased vascular comorbidity was predictive of poorer cognitive functioning, and this effect was almost entirely mediated (94.76%) by differences in brain structure. CONCLUSIONS: Vascular comorbidity is associated with deleterious effects on brain structure and lower cognitive functioning in IBD. These findings suggest that proper identification and treatment of vascular disease is essential to the overall management of IBD, and that certain brain areas may serve as critical targets for predicting the response to therapeutic interventions.


Vascular disease is associated with decreased cognitive performance in persons with inflammatory bowel disease, and this is mainly driven by changes in the brain, including both gray matter and white matter regions.

16.
Brain Res Bull ; 203: 110771, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37797750

RESUMO

Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is characterized by inflammation of the gastrointestinal tract and is a disorder of the brain-gut axis. Neuroimaging studies of brain function and structure have helped better understand the relationships between the brain, gut, and comorbidity in IBD. Studies of brain structure have primarily employed voxel-based morphometry to measure grey matter volume and surface-based morphometry to measure cortical thickness. Far fewer studies have employed other surface-based morphometry metrics such as gyrification, cortical complexity, and sulcal depth. In this study, brain structure differences between 72 adults with IBD and 90 healthy controls were assessed using all five metrics. Significant differences were found for cortical thickness with the IBD group showing extensive left-lateralized thinning, and for cortical complexity with the IBD group showing greater complexity in the left fusiform and right posterior cingulate. No significant differences were found in grey matter volume, gyrification, or sulcal depth. Within the IBD group, a post hoc analysis identified that disease duration is associated with cortical complexity of the right supramarginal gyrus, albeit with a more lenient threshold applied.


Assuntos
Doenças Inflamatórias Intestinais , Adulto , Humanos , Doenças Inflamatórias Intestinais/diagnóstico por imagem , Doenças Inflamatórias Intestinais/complicações , Encéfalo/diagnóstico por imagem , Neuroimagem , Lobo Parietal
17.
J Sex Marital Ther ; 38(5): 418-35, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22900624

RESUMO

The purpose of this study was to determine whether spinal cord functional magnetic resonance imaging could be used to map neural activity throughout the lower thoracic, lumbar, and sacral spinal cord regions during sexual arousal in healthy men. The authors found that viewing erotic films and genital self-stimulation elicited predominantly increased signal, indicative of amplified neuronal input to the dorsal and ventral horns and in the autonomic preganglionic nuclei of the lower thoracic, lumbar, and sacral spinal cord. In addition, linear regression analyses revealed a number of robust correlations (|R| ≥ 0.7) between signal intensity changes in these spinal cord regions and self-reported ratings of mental and physical sexual arousal. Taken together, these results demonstrate that spinal cord functional magnetic resonance imaging is an effective and sensitive technique for mapping the neural correlates of sexual arousal in the spinal cords of able-bodied men. Most important, the results from this study indicate that spinal cord functional magnetic resonance imaging may have important applications as a clinical tool for assessing and mapping the changes that occur in the spinal cords of men suffering from sexual dysfunction as a result of spinal cord trauma.


Assuntos
Nível de Alerta/fisiologia , Mapeamento Encefálico/métodos , Heterossexualidade/fisiologia , Estimulação Luminosa/métodos , Medula Espinal/fisiologia , Adulto , Humanos , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fenômenos Fisiológicos do Sistema Nervoso , Neurônios , Valores de Referência
18.
Front Neurol ; 13: 910014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685743

RESUMO

Objective: Vascular comorbidities are associated with reduced cognitive performance and with changes in brain structure in people with multiple sclerosis (MS). Understanding causal pathways is necessary to support the design of interventions to mitigate the impacts of comorbidities, and to monitor their effectiveness. We assessed the inter-relationships among vascular comorbidity, cognition and brain structure in people with MS. Methods: Adults with neurologist-confirmed MS reported comorbidities, and underwent assessment of their blood pressure, HbA1c, and cognitive functioning (i.e., Symbol Digit Modalities Test, California Verbal Learning Test, Brief Visuospatial Memory Test-Revised, and verbal fluency). Test scores were converted to age-, sex-, and education-adjusted z-scores. Whole brain magnetic resonance imaging (MRI) was completed, from which measures of thalamic and hippocampal volumes, and mean diffusivity of gray matter and normal-appearing white matter were converted to age and sex-adjusted z-scores. Canonical correlation analysis was used to identify linear combinations of cognitive measures (cognitive variate) and MRI measures (MRI variate) that accounted for the most correlation between the cognitive and MRI measures. Regression analyses were used to test whether MRI measures mediated the relationships between the number of vascular comorbidities and cognition measures. Results: Of 105 participants, most were women (84.8%) with a mean (SD) age of 51.8 (12.8) years and age of symptom onset of 29.4 (10.5) years. Vascular comorbidity was common, with 35.2% of participants reporting one, 15.2% reporting two, and 8.6% reporting three or more. Canonical correlation analysis of the cognitive and MRI variables identified one pair of variates (Pillai's trace = 0.45, p = 0.0035). The biggest contributors to the cognitive variate were the SDMT and CVLT-II, and to the MRI variate were gray matter MD and thalamic volume. The correlation between cognitive and MRI variates was 0.50; these variates were used in regression analyses. On regression analysis, vascular comorbidity was associated with the MRI variate, and with the cognitive variate. After adjusting for the MRI variate, vascular comorbidity was not associated with the cognitive variate. Conclusion: Vascular comorbidity is associated with lower cognitive function in people with MS and this association is partially mediated via changes in brain macrostructure and microstructure.

19.
Front Neuroimaging ; 1: 970385, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37555178

RESUMO

The Comorbidity and Cognition in Multiple Sclerosis (CCOMS) study represents a coordinated effort by a team of clinicians, neuropsychologists, and neuroimaging experts to investigate the neural basis of cognitive changes and their association with comorbidities among persons with multiple sclerosis (MS). The objectives are to determine the relationships among psychiatric (e.g., depression or anxiety) and vascular (e.g., diabetes, hypertension, etc.) comorbidities, cognitive performance, and MRI measures of brain structure and function, including changes over time. Because neuroimaging forms the basis for several investigations of specific neural correlates that will be reported in future publications, the goal of the current manuscript is to briefly review the CCOMS study design and baseline characteristics for participants enrolled in the three study cohorts (MS, psychiatric control, and healthy control), and provide a detailed description of the MRI hardware, neuroimaging acquisition parameters, and image processing pipelines for the volumetric, microstructural, functional, and perfusion MRI data.

20.
Eur J Neurosci ; 33(4): 577-88, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21314846

RESUMO

Data acquired with functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) are often interpreted in terms of the underlying neuronal activity, despite mounting evidence that these signals do not always correlate with electrophysiological recordings. Therefore, considering the increasing popularity of functional neuroimaging, it is clear that a more comprehensive theory is needed to reconcile these apparent disparities and more accurately explain the mechanisms through which various PET and fMRI signals arise. In the present article, we have turned our attention to astrocytes, which vastly outnumber neurons and are known to serve a number of functions throughout the central nervous system (CNS). For example, astrocytes are known to be critically involved in neurotransmitter uptake and recycling, and empirical data suggests that brain activation increases both oxidative and glycolytic astrocyte metabolism. Furthermore, a number of recent studies imply that astrocytes are likely to play a key role in regulating cerebral blood delivery. Therefore, we propose that, by mediating neurometabolic and neurovascular processes throughout the CNS, astrocytes could provide a common physiological basis for fMRI and PET signals. Such a theory has significant implications for the interpretation of functional neuroimaging signals, because astrocytic changes reflect subthreshold neuronal activity, simultaneous excitatory/inhibitory synaptic inputs, and other transient metabolic demands that may not elicit electrophysiological changes. It also suggests that fMRI and PET signals may have inherently less sensitivity to decreases in synaptic input (i.e. 'negative activity') and/or inhibitory (GABAergic) neurotransmission.


Assuntos
Astrócitos/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos , Neurônios/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Astrócitos/fisiologia , Metabolismo Energético/fisiologia , Humanos , Transdução de Sinais , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA