Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Evol ; 38(2): 437-448, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32931587

RESUMO

In the last 240,000 years, males of the Drosophila simulans species clade have evolved striking differences in the morphology of their epandrial posterior lobes and claspers (surstyli). These appendages are used for grasping the female during mating and so their divergence is most likely driven by sexual selection. Mapping studies indicate a highly polygenic and generally additive genetic basis for these morphological differences. However, we have limited understanding of the gene regulatory networks that control the development of genital structures and how they evolved to result in this rapid phenotypic diversification. Here, we used new D. simulans/D. mauritiana introgression lines on chromosome arm 3L to generate higher resolution maps of posterior lobe and clasper differences between these species. We then carried out RNA-seq on the developing genitalia of both species to identify the expressed genes and those that are differentially expressed between the two species. This allowed us to test the function of expressed positional candidates during genital development in D. melanogaster. We identified several new genes involved in the development and possibly the evolution of these genital structures, including the transcription factors Hairy and Grunge. Furthermore, we discovered that during clasper development Hairy negatively regulates tartan (trn), a gene known to contribute to divergence in clasper morphology. Taken together, our results provide new insights into the regulation of genital development and how this has evolved between species.


Assuntos
Evolução Biológica , Drosophila simulans/genética , Animais , Drosophila simulans/anatomia & histologia , Drosophila simulans/crescimento & desenvolvimento , Drosophila simulans/metabolismo , Genitália Masculina/anatomia & histologia , Genitália Masculina/crescimento & desenvolvimento , Genitália Masculina/metabolismo , Masculino
2.
Proc Natl Acad Sci U S A ; 116(38): 19025-19030, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31484761

RESUMO

Male genital structures are among the most rapidly evolving morphological traits and are often the only features that can distinguish closely related species. This process is thought to be driven by sexual selection and may reinforce species separation. However, while the genetic bases of many phenotypic differences have been identified, we still lack knowledge about the genes underlying evolutionary differences in male genital organs and organ size more generally. The claspers (surstyli) are periphallic structures that play an important role in copulation in insects. Here, we show that divergence in clasper size and bristle number between Drosophila mauritiana and Drosophila simulans is caused by evolutionary changes in tartan (trn), which encodes a transmembrane leucine-rich repeat domain protein that mediates cell-cell interactions and affinity. There are no fixed amino acid differences in trn between D. mauritiana and D. simulans, but differences in the expression of this gene in developing genitalia suggest that cis-regulatory changes in trn underlie the evolution of clasper morphology in these species. Finally, analyses of reciprocal hemizygotes that are genetically identical, except for the species from which the functional allele of trn originates, determined that the trn allele of D. mauritiana specifies larger claspers with more bristles than the allele of D. simulans Therefore, we have identified a gene underlying evolutionary change in the size of a male genital organ, which will help to better understand not only the rapid diversification of these structures, but also the regulation and evolution of organ size more broadly.


Assuntos
Evolução Biológica , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/crescimento & desenvolvimento , Genitália Masculina/anatomia & histologia , Genitália Masculina/crescimento & desenvolvimento , Proteínas de Membrana/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genitália Masculina/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Tamanho do Órgão , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA