Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-18334320

RESUMO

The present work first provides an experimental technique to study self-heating of bulk acoustic wave (BAW) resonators under high RF power in the gigahertz range. This study is specially focused on film bulk acoustic wave resonators and solidly mounted resonators processed onto silicon wafers and designed for wireless systems. Precisely, the reflection coefficient of a one-port device is measured while up to several watts are applied and power leads to electrical drifts of impedances. In the following, we describe how absorbed power can be determined from the incident one in real time. Therefore, an infrared camera held over the radio frequency micro electromechanical system (RF-MEMS) surface with an exceptional spatial resolution reaching up to 2 microm/pixels gives accurate temperature mapping of resonators after emissivity correction. From theoretical point of view, accurate three-dimensional (3-D) structures for finite-element modeling analyses are carried out to know the best materials and architectures to use for enhancing power handling. In both experimental and theoretical investigations, comparison is made between film bulk acoustic wave resonators and solidly mounted resonators. Thus, the trend in term of material, architecture, and size of device for power application such as in transmission path of a transceiver is clearly identified.


Assuntos
Desenho Assistido por Computador , Segurança de Equipamentos/métodos , Modelos Teóricos , Transdutores , Ultrassonografia/instrumentação , Simulação por Computador , Transferência de Energia , Temperatura Alta , Ondas de Rádio , Radiometria , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA