Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38893954

RESUMO

In this paper, results of research on the reactivities of selected biomass types considering their application in pyrometallurgical processes of metal production are presented. Walnut shells, sunflower husk pellets and spent coffee grounds were selected as biomass materials. Their use as potential reducers in the process of metallurgical slag decopperisation is an innovative approach to this subject. The thermogravimetric findings show that all three tested biomass types are classified as highly reactive. The time to reach maximum reactivity ranges from 1.5 to 3 min and, the lowest value is recorded for the sample of spent coffee grounds. The sample hold time of two hours enables copper content reduction to approx. 1 wt% for practically all the reducers tested. A longer duration of liquid slag contact with the reducer results in a decreased copper content in the slag to a value below 1 wt%. Copper concentrations of 0.5 wt% and lower are observed with a hold time of 4 h. The preliminary results indicate that there is great potential for the use of this type of material in non-ferrous metallurgy, which may translate into replacing fossil raw materials and thus introducing the principles of a sustainable process in this case of metal production.

2.
Materials (Basel) ; 16(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37109862

RESUMO

In the presented article, an electrocoagulation method using a steel cathode and a steel anode was used to obtain chromium from laboratory-prepared model solutions with known compositions. The study aimed to analyze the effect of solution conductivity, pH, and 100% efficiency of chromium removal from the solution, as well as the highest possible Cr/Fe ratio in the final solid product throughout the process of electrocoagulation. Different concentrations of chromium (VI) (100, 1000, and 2500 mg/L) and different pH values (4.5, 6, and 8) were investigated. Various solution conductivities were provided by the addition of 1000, 2000, and 3000 mg/L of NaCl to the studied solutions. Chromium removal efficiency equal to 100% was achieved for all studied model solutions for different experiment times, depending on the selected current intensity. The final solid product contained up to 15% chromium in the form of mixed FeCr hydroxides obtained under optimal experimental conditions: pH = 6, I = 0.1 A, and c (NaCl) = 3000 mg/L. The experiment indicated the advisability of using a pulsed change of electrode polarity, which led to a reduction in the time of the electrocoagulation process. The results may help in the rapid adjustment of the conditions for further electrocoagulation experiments, and they can be used as the optimization experimental matrix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA