RESUMO
Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) require signal transducer and activator of transcription 4 (STAT4) to elicit rapid effector responses and protect against pathogens. By combining genetic and transcriptomic approaches, we uncovered divergent roles for STAT4 in regulating effector differentiation of these functionally related cell types. Stat4 deletion in Ncr1-expressing cells led to impaired NK cell terminal differentiation as well as to an unexpected increased generation of cytotoxic ILC1 during intestinal inflammation. Mechanistically, Stat4-deficient ILC1 exhibited upregulation of gene modules regulated by STAT5 in vivo and an aberrant effector differentiation upon in vitro stimulation with IL-2, used as a prototypical STAT5 activator. Moreover, STAT4 expression in NCR+ innate lymphocytes restrained gut inflammation in the dextran sulfate sodium-induced colitis model limiting pathogenic production of IL-13 from adaptive CD4+ T cells in the large intestine. Collectively, our data shed light on shared and distinctive mechanisms of STAT4-regulated transcriptional control in NK cells and ILC1 required for intestinal inflammatory responses.
Assuntos
Antineoplásicos , Fator de Transcrição STAT5 , Humanos , Imunidade Inata , Diferenciação Celular , Células Matadoras Naturais , Inflamação , Fator de Transcrição STAT4/genéticaRESUMO
Nuclear factor-κB (NF-κB) transcription factors play a key role in the pathogenesis of multiple myeloma (MM). The survival, proliferation and chemoresistance of malignant plasma cells largely rely on the activation of canonical and noncanonical NF-κB pathways. They are triggered by cancer-associated mutations or by the autocrine and paracrine production of cytokines and growth factors as well as direct interaction with cellular and noncellular components of bone marrow microenvironment (BM). In this context, NF-κB also significantly affects the activity of noncancerous cells, including mesenchymal stromal cells (MSCs), which have a critical role in disease progression. Indeed, NF-κB transcription factors are involved in inflammatory signaling that alters the functional properties of these cells to support cancer evolution. Moreover, they act as regulators and/or effectors of pathways involved in the interplay between MSCs and MM cells. The aim of this review is to analyze the role of NF-κB in this hematologic cancer, focusing on NF-κB-dependent mechanisms in tumor cells, MSCs and myeloma-mesenchymal stromal cell crosstalk.
Assuntos
Células-Tronco Mesenquimais , Mieloma Múltiplo , Humanos , NF-kappa B/metabolismo , Mieloma Múltiplo/patologia , Transdução de Sinais , Células-Tronco Mesenquimais/metabolismo , Fatores de Transcrição/metabolismo , Células Estromais/metabolismo , Microambiente TumoralRESUMO
Glioblastoma multiforme (GBM) has high mortality and recurrence rates. Malignancy resilience is ascribed to Glioblastoma Stem Cells (GSCs), which are resistant to Temozolomide (TMZ), the gold standard for GBM post-surgical treatment. However, Nitric Oxide (NO) has demonstrated anti-cancer efficacy in GBM cells, but its potential impact on GSCs remains unexplored. Accordingly, we investigated the effects of NO, both alone and in combination with TMZ, on patient-derived GSCs. Experimentally selected concentrations of diethylenetriamine/NO adduct and TMZ were used through a time course up to 21 days of treatment, to evaluate GSC proliferation and death, functional recovery, and apoptosis. Immunofluorescence and Western blot analyses revealed treatment-induced effects in cell cycle and DNA damage occurrence and repair. Our results showed that NO impairs self-renewal, disrupts cell-cycle progression, and expands the quiescent cells' population. Consistently, NO triggered a significant but tolerated level of DNA damage, but not apoptosis. Interestingly, NO/TMZ cotreatment further inhibited cell cycle progression, augmented G0 cells, induced cell death, but also enhanced DNA damage repair activity. These findings suggest that, although NO administration does not eliminate GSCs, it stunts their proliferation, and makes cells susceptible to TMZ. The resulting cytostatic effect may potentially allow long-term control over the GSCs' subpopulation.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/uso terapêutico , Glioblastoma/metabolismo , Óxido Nítrico/metabolismo , Dacarbazina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Ciclo Celular , Células-Tronco/metabolismo , Neoplasias Encefálicas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêuticoRESUMO
The success of senescence-based anticancer therapies relies on their anti-proliferative power and on their ability to trigger anti-tumor immune responses. Indeed, genotoxic drug-induced senescence increases the expression of NK cell-activating ligands on multiple myeloma (MM) cells, boosting NK cell recognition and effector functions. Senescent cells undergo morphological change and context-dependent functional diversification, acquiring the ability to secrete a vast pool of molecules termed the senescence-associated secretory phenotype (SASP), which affects neighboring cells. Recently, exosomes have been recognized as SASP factors, contributing to modulating a variety of cell functions. In particular, evidence suggests a key role for exosomal microRNAs in influencing many hallmarks of cancer. Herein, we demonstrate that doxorubicin treatment of MM cells leads to the enrichment of miR-433 into exosomes, which in turn induces bystander senescence. Our analysis reveals that the establishment of the senescent phenotype on neighboring MM cells is p53- and p21-independent and is related to CDK-6 down-regulation. Notably, miR-433-dependent senescence does not induce the up-regulation of activating ligands on MM cells. Altogether, our findings highlight the possibility of miR-433-enriched exosomes to reinforce doxorubicin-mediated cellular senescence.
Assuntos
Antibióticos Antineoplásicos , Efeito Espectador , Senescência Celular , Doxorrubicina , Exossomos , MicroRNAs , Mieloma Múltiplo , Inibidores da Topoisomerase II , Senescência Celular/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico , Humanos , Linhagem Celular Tumoral , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , Dano ao DNA , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismoRESUMO
Natural Killer (NK) cells are innate cytotoxic lymphoid cells that play a crucial role in cancer immunosurveillance. NKG2D is an activating receptor that binds to MIC and ULBP molecules typically induced on damaged, transformed, or infected cells. The secretion of NKG2D ligands (NKG2DLs) through protease-mediated cleavage or in an extracellular vesicle (EV) is a mode to control their cell surface expression and a mechanism used by cancer cells to evade NKG2D-mediated immunosurveillance. EVs are emerging as important players in mediating cell-to-cell communication due to their ability to transfer biological material to acceptor cells. Herein, we investigated the spreading of NKG2DLs of both MIC and ULBP molecules through the EV-mediated cross-dressing on multiple myeloma (MM) cells. We focused our attention on two MICA allelic variants, namely MICA*008 and MICA*019, representing the prototype of short and long MICA alleles, respectively, and on ULBP-1, ULBP-2, and ULBP-3. Our findings demonstrate that both ULBP and MICA ligands can be acquired from tumor cells through EVs enhancing NK cell recognition and killing. Moreover, besides MICA, EVs expressing ULBP-1 but not ULBP-2 and 3 were detected in bone marrow aspirates derived from a cohort of MM patients. Our findings shed light on the role of EV-associated MICA allelic variants and ULBP molecules in the modulation of NKG2D-mediated NK cell immunosurveillance in the tumor microenvironment. Moreover, the EV-mediated transfer of NKG2DLs could suggest novel therapeutic approaches based on the usage of engineered nanoparticles aimed at increasing cancer cell immunogenicity.
Assuntos
Vesículas Extracelulares , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/metabolismo , Ligantes , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais , Vesículas Extracelulares/metabolismo , Morte Celular , Bandagens , Microambiente TumoralRESUMO
Rearrangement of the actin cytoskeleton is critical for cytotoxic and immunoregulatory functions as well as migration of natural killer (NK) cells. However, dynamic reorganization of actin is a complex process, which remains largely unknown. Here, we investigated the role of the protein Cereblon (CRBN), an E3 ubiquitin ligase complex co-receptor and the primary target of the immunomodulatory drugs, in NK cells. We observed that CRBN partially colocalizes with F-actin in chemokine-treated NK cells and is recruited to the immunological synapse, thus suggesting a role for this protein in cytoskeleton reorganization. Accordingly, silencing of CRBN in NK cells results in a reduced cytotoxicity that correlates with a defect in conjugate and lytic synapse formation. Moreover, CRBN depletion significantly impairs the ability of NK cells to migrate and reduces the enhancing effect of lenalidomide on NK cell migration. Finally, we provided evidence that CRBN is required for activation of the small GTPase Rac1, a critical mediator of cytoskeleton dynamics. Indeed, in CRBN-depleted NK cells, chemokine-mediated or target cell-mediated Rac1 activation is significantly reduced. Altogether our data identify a critical role for CRBN in regulating NK cell functions and suggest that this protein may mediate the stimulatory effect of lenalidomide on NK cells.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Movimento Celular/imunologia , Citotoxicidade Imunológica/imunologia , Células Matadoras Naturais/imunologia , Ubiquitina-Proteína Ligases/imunologia , Proteínas rac1 de Ligação ao GTP/imunologia , Movimento Celular/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Humanos , Agentes de Imunomodulação/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Lenalidomida/farmacologiaRESUMO
Colorectal cancer (CRC) is one of the most common malignancies and leading causes of cancer-related deaths worldwide. Despite its complex pathogenesis and progression, CRC represents a well-fitting example of how the immune contexture can dictate the disease outcome. The presence of cytotoxic lymphocytes, both CD8+ T cells and natural killer (NK) cells, represents a relevant prognostic factor in CRC and is associated with a better overall survival. Together with NK cells, other innate lymphocytes, namely, innate lymphoid cells (ILCs), have been found both in biopsies of CRC patients and in murine models of intestinal cancer, playing both pro- and anti-tumor activities. In particular, several type 1 innate lymphoid cells (ILC1) with cytotoxic functions have been recently described, and evidence in mice shows a role for both NK cells and ILC1 in controlling CRC metastasis. In this review, we provide an overview of the features of NK cells and the expanding spectrum of innate lymphocytes with cytotoxic functions. We also comment on both the described and the potential roles these innate lymphocytes can play during the progression of intestinal cancer leading to metastasis. Finally, we discuss recent advances in the molecular mechanisms underlying the functional regulation of cytotoxic innate lymphocytes in CRC.
Assuntos
Neoplasias Colorretais , Linfócitos , Animais , Linfócitos T CD8-Positivos , Imunidade Inata , Células Matadoras Naturais , CamundongosRESUMO
Immunity to pathogens is ensured through integration of early responses mediated by innate cells and late effector functions taking place after terminal differentiation of adaptive lymphocytes. In this context, innate lymphoid cells (ILCs) and adaptive T cells represent a clear example of how prototypical effector functions, including polarized expression of cytokines and/or cytotoxic activity, can occur with overlapping modalities but different timing. The ability of ILCs to provide early protection relies on their poised epigenetic state, which determines their propensity to quickly respond to cytokines and to activate specific patterns of signal-dependent transcription factors. Cytokines activating the Janus kinases (JAKs) and members of the signal transducer and activator of transcription (STAT) pathway are key regulators of lymphoid development and sustain the processes underlying T-cell activation and differentiation. The role of the JAK/STAT pathway has been recently extended to several aspects of ILC biology. Here, we discuss how JAK/STAT signals affect ILC development and effector functions in the context of immune responses, highlighting the molecular mechanisms involved in regulation of gene expression as well as the potential of targeting the JAK/STAT pathway in inflammatory pathologies.
Assuntos
Janus Quinases/metabolismo , Linfócitos/imunologia , Fatores de Transcrição STAT/metabolismo , Animais , Citocinas/metabolismo , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Inflamação , Transdução de SinaisRESUMO
The Ikaros zing-finger family transcription factors (IKZF TFs) are important regulators of lymphocyte development and differentiation and are also highly expressed in B cell malignancies, including Multiple Myeloma (MM), where they are required for cancer cell growth and survival. Moreover, IKZF TFs negatively control the functional properties of many immune cells. Thus, the targeting of these proteins has relevant therapeutic implications in cancer. Indeed, accumulating evidence demonstrated that downregulation of Ikaros and Aiolos, two members of the IKZF family, in malignant plasma cells as well as in adaptative and innate lymphocytes, is key for the anti-myeloma activity of Immunomodulatory drugs (IMiDs). This review is focused on IKZF TF-related pathways in MM. In particular, we will address how the depletion of IKZF TFs exerts cytotoxic effects on MM cells, by reducing their survival and proliferation, and concomitantly potentiates the antitumor immune response, thus contributing to therapeutic efficacy of IMiDs, a cornerstone in the treatment of this neoplasia.
Assuntos
Fator de Transcrição Ikaros/fisiologia , Mieloma Múltiplo/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Humanos , Fator de Transcrição Ikaros/genética , Imunidade/efeitos dos fármacos , Imunomodulação/efeitos dos fármacos , Lenalidomida/farmacologia , Linfócitos/citologia , Camundongos , Mieloma Múltiplo/imunologia , Talidomida/farmacologiaRESUMO
Nectin2 is a member of immunoglobulin-like cell adhesion molecules and plays a prominent role in the establishment of adherens and tight junctions. It is also upregulated on the surface of tumor and virus-infected cells where it functions as a ligand for the activating receptor CD226, thus contributing to cytotoxic lymphocyte-mediated recognition and killing of damaged cells. Little is currently known about the regulation of Nectin2 expression and, in particular, whether posttranscriptional and posttranslational mechanisms are involved. Here, we analyzed Nectin2 expression on a panel of human tumor cell lines and primary cultures and we found that Nectin2 is mainly expressed in cytoplasmic pools. Moreover, we demonstrated that ubiquitination of Nectin2 promotes its degradation and is responsible for protein intracellular retention. Indeed, inhibition of the ubiquitin pathway results in increased Nectin2 surface expression and enhances tumor cell susceptibility to NK cell cytotoxicity. Our results demonstrate a previously unknown mechanism of Nectin2 regulation revealing that the ubiquitin pathway represents a potential target of intervention in order to increase susceptibility to NK cell-mediated lysis.
Assuntos
Citotoxicidade Imunológica/imunologia , Regulação da Expressão Gênica/imunologia , Nectinas/biossíntese , Evasão Tumoral/imunologia , Células Cultivadas , Humanos , Células Matadoras Naturais , Complexo de Endopeptidases do Proteassoma/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinação/imunologiaRESUMO
NK cells have an important role in immunosurveillance of multiple myeloma (MM) progression, and their activity is enhanced by combination therapies able to regulate the expression of specific activating ligands. Liver X receptors (LXRs) are nuclear receptors and important regulators of intracellular cholesterol and lipid homeostasis. Moreover, they have regulatory roles in both cancer and immune response. Indeed, they can regulate inflammation and innate and acquired immunity. Furthermore, LXR activation directly acts in cancer cells (e.g., prostate, breast, melanoma, colon cancer, hepatocarcinoma, glioblastoma, and MM) that show an accumulation of cholesterol and alteration of LXR-mediated metabolic pathways. Here, we investigated the role of LXR and cholesterol on the expression of the NK cell-activating ligands major histocompatibility complex class I chain-related molecule A and B (MICA and MICB) in MM cells. The results shown in this work indicate that MM cells are responsive to LXR activation, which induces changes in the intracellular cholesterol content. These changes correlate with an enhanced expression of MICA and MICB in human MM cell lines and in primary malignant plasma cells, 2 ligands of the NK group 2D receptor (NKG2D)/CD314 activating receptor expressed in cytotoxic lymphocytes, rendering MM cells more sensitive to recognition, degranulation, and killing by NK cells. Mechanistically, we observed that LXR activation regulates MICA and MICB expression at different levels: MICA at the transcriptional level, enhancing mica promoter activity, and MICB by inhibiting its degradation in lysosomes. The present study provides evidence that activation of LXR, by enhancing NKG2D ligand expression, can promote NK cell-mediated cytotoxicity and suggests a novel immune-mediated mechanism involving modulation of intracellular cholesterol levels in cancer cells.-Bilotta, M. T., Abruzzese, M. P., Molfetta, R., Scarno, G., Fionda, C., Zingoni, A., Soriani, A., Garofalo, T., Petrucci, M. T., Ricciardi, M. R., Paolini, R., Santoni, A., Cippitelli, M. Activation of liver X receptor up-regulates the expression of the NKG2D ligands MICA and MICB in multiple myeloma through different molecular mechanisms.
Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Receptores X do Fígado/metabolismo , Mieloma Múltiplo/metabolismo , Imunidade Adaptativa/fisiologia , Apoptose/genética , Apoptose/fisiologia , Linhagem Celular , Células Cultivadas , Cromatografia em Camada Fina , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Imunidade Inata/fisiologia , Inflamação/metabolismo , Células Matadoras Naturais/metabolismo , Receptores X do Fígado/genética , Microscopia Confocal , Mieloma Múltiplo/genética , Regiões Promotoras Genéticas/genéticaRESUMO
CD155 is an adhesion molecule belonging to the Nectin/Nectin-like family often overexpressed on tumor cells and involved in many different processes such as cell adhesion, migration and proliferation. In contrast to these pro-tumorigenic functions, CD155 is also a ligand for the activating receptor DNAM-1 expressed on cytotoxic lymphocytes including Natural Killer (NK) cells and involved in anti-tumor immune response. However, during tumor progression inhibitory receptors for CD155 are up-regulated on the surface of effector cells, contributing to an impairment of their cytotoxic capacity. In this review we will focus on the roles of CD155 as a ligand for the activating receptor DNAM-1 regulating immune surveillance against cancer and as pro-oncogenic molecule favoring tumor proliferation, invasion and immune evasion. A deeper understanding of the multiple roles played by CD155 in cancer development contributes to improving anti-tumor strategies aimed to potentiate immune response against cancer.
Assuntos
Vigilância Imunológica/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Receptores Virais/metabolismo , Progressão da Doença , Humanos , Neoplasias/metabolismoRESUMO
Elimination of virus-infected cells by cytotoxic lymphocytes is triggered by activating receptors, among which NKG2D and DNAM-1/CD226 play an important role. Their ligands, that is, MHC class I-related chain (MIC) A/B and UL16-binding proteins (ULBP)1-6 (NKG2D ligand), Nectin-2/CD112, and poliovirus receptor (PVR)/CD155 (DNAM-1 ligand), are often induced on virus-infected cells, although some viruses, including human CMV (HCMV), can block their expression. In this study, we report that infection of different cell types with laboratory or low-passage HCMV strains upregulated MICA, ULBP3, and PVR, with NKG2D and DNAM-1 playing a role in NK cell-mediated lysis of infected cells. Inhibition of viral DNA replication with phosphonoformic acid did not prevent ligand upregulation, thus indicating that early phases of HCMV infection are involved in ligand increase. Indeed, the major immediate early (IE) proteins IE1 and IE2 stimulated the expression of MICA and PVR, but not ULBP3. IE2 directly activated MICA promoter via its binding to an IE2-responsive element that we identified within the promoter and that is conserved among different alleles of MICA. Both IE proteins were instead required for PVR upregulation via a mechanism independent of IE DNA binding activity. Finally, inhibiting IE protein expression during HCMV infection confirmed their involvement in ligand increase. We also investigated the contribution of the DNA damage response, a pathway activated by HCMV and implicated in ligand regulation. However, silencing of ataxia telangiectasia mutated, ataxia telangiectasia and Rad3-related protein, and DNA-dependent protein kinase did not influence ligand expression. Overall, these data reveal that MICA and PVR are directly regulated by HCMV IE proteins, and this may be crucial for the onset of an early host antiviral response.
Assuntos
Regulação da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Proteínas Imediatamente Precoces/metabolismo , Receptores Virais/genética , Transativadores/metabolismo , Antígenos de Diferenciação de Linfócitos T/genética , Linhagem Celular , Citotoxicidade Imunológica , Replicação do DNA/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/virologia , Foscarnet/farmacologia , Proteínas Ligadas por GPI/genética , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Proteínas Imediatamente Precoces/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Células Matadoras Naturais/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Transativadores/farmacologia , Ativação Transcricional , Regulação para Cima , Proteínas Virais/genética , Replicação Viral/efeitos dos fármacosRESUMO
Natural killer (NK) cells are critical immune effector cells capable of mediating antitumor responses. These cytotoxic lymphocytes recognize transformed cells through a mechanism mainly dependent on the engagement of several activating receptors. However, many tumors have developed strategies to evade immunosurveillance and detection by NK cells. A relevant immune escape mechanism is the down regulation of NK cell activating ligands on the surface of tumor cells by proteolytic shedding mediated by different members of metalloproteinase families. Here, we consider two important NK activating receptors, namely NKG2D and NKp30, the ligands (i.e., MICA/B, ULBPs, and B7-H6) of which can be released by cancer cells through proteolytic cleavage. Modulation of ligand shedding in response to cancer therapy is also examined, and we discuss how metalloproteinases implicated in the ligand cleavage could be targeted in novel therapeutic schemes to counteract tumor escape from stress-elicited immune responses.
RESUMO
Genotoxic stress can promote antitumor NK cell responses by upregulating the surface expression of activating ligands on cancer cells. Moreover, a number of studies suggested a role for soluble NK group 2D ligands in the impairment of NK cell tumor recognition and killing. We investigated whether genotoxic stress could promote the release of NK group 2D ligands (MHC class I-related chain [MIC]A and MICB), as well as the molecular mechanisms underlying this event in human multiple myeloma (MM) cells. Our results show that genotoxic agents used in the therapy of MM (i.e., doxorubicin and melphalan) selectively affect the shedding of MIC molecules that are sensitive to proteolytic cleavage, whereas the release of the short MICA*008 allele, which is frequent in the white population, is not perturbed. In addition, we found that a disintegrin and metalloproteinase 10 expression is upregulated upon chemotherapeutic treatment both in patient-derived CD138(+)/CD38(+) plasma cells and in several MM cell lines, and we demonstrate a crucial role for this sheddase in the proteolytic cleavage of MIC by means of silencing and pharmacological inhibition. Interestingly, the drug-induced upregulation of a disintegrin and metalloproteinase 10 on MM cells is associated with a senescent phenotype and requires generation of reactive oxygen species. Moreover, the combined use of chemotherapeutic drugs and metalloproteinase inhibitors enhances NK cell-mediated recognition of MM cells, preserving MIC molecules on the cell surface and suggesting that targeting of metalloproteinases in conjunction with chemotherapy could be exploited for NK cell-based immunotherapeutic approaches, thus contributing to avoid the escape of malignant cells from stress-elicited immune responses.
Assuntos
Proteínas ADAM/imunologia , Secretases da Proteína Precursora do Amiloide/imunologia , Citotoxinas/farmacologia , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Proteínas de Membrana/imunologia , Plasmócitos/efeitos dos fármacos , Proteínas ADAM/genética , Proteína ADAM10 , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/imunologia , Secretases da Proteína Precursora do Amiloide/genética , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células da Medula Óssea/patologia , Linhagem Celular Tumoral , Senescência Celular , Dano ao DNA , Doxorrubicina/farmacologia , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Inibidores de Metaloproteinases de Matriz/farmacologia , Melfalan/farmacologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Proteínas de Membrana/genética , Mieloma Múltiplo/genética , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Plasmócitos/imunologia , Plasmócitos/patologia , Cultura Primária de Células , Proteólise , Espécies Reativas de Oxigênio/imunologia , Transdução de Sinais , Sindecana-1/genética , Sindecana-1/imunologiaRESUMO
Increasing evidence indicates that cancer cell stress induced by chemotherapeutic agents promote antitumor immune responses and contribute to their full clinical efficacy. In this article, we identify the signaling events underlying chemotherapy-induced NKG2D and DNAM-1 ligand expression on multiple myeloma (MM) cells. Our findings indicate that sublethal doses of doxorubicin and melphalan initiate a DNA damage response (DDR) controlling ligand upregulation on MM cell lines and patient-derived malignant plasma cells in Chk1/2-dependent and p53-independent manner. Drug-induced MICA and PVR gene expression are transcriptionally regulated and involve DDR-dependent E2F1 transcription factor activity. We also describe the involvement of changes in the redox state in the control of DDR-dependent upregulation of ligand surface expression and gene transcriptional activity by using the antioxidant agent N-acetyl-L-cysteine. Finally, in accordance with much evidence indicating that DDR and oxidative stress are major determinants of cellular senescence, we found that redox-dependent DDR activation upon chemotherapeutic treatment is critical for MM cell entry in premature senescence and is required for the preferential ligand upregulation on senescent cells, which are preferentially killed by NK cells and trigger potent IFN-γ production. We propose immunogenic senescence as a mechanism that promotes the clearance of drug-treated tumor cells by innate effector lymphocytes, including NK cells.
Assuntos
Dano ao DNA , Fator de Transcrição E2F1/imunologia , Células Matadoras Naturais/imunologia , Espécies Reativas de Oxigênio/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos de Diferenciação de Linfócitos T/imunologia , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antineoplásicos/farmacologia , Western Blotting , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Ligantes , Ativação Linfocitária/imunologia , Masculino , Melfalan/farmacologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Virais/genética , Receptores Virais/imunologia , Receptores Virais/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologiaRESUMO
BACKGROUND: DNAX accessory molecule-1 (DNAM-1) is an activating receptor constitutively expressed by macrophages/dendritic cells and by T lymphocytes and Natural Killer (NK) cells, having an important role in anticancer responses; in this regard, combination therapies able to enhance the expression of DNAM-1 ligands on tumor cells are of therapeutic interest. In this study, we investigated the effect of different nitric oxide (NO) donors on the expression of the DNAM-1 ligand Poliovirus Receptor/CD155 (PVR/CD155) in multiple myeloma (MM) cells. METHODS: Six MM cell lines, SKO-007(J3), U266, OPM-2, RPMI-8226, ARK and LP1 were used to investigate the activity of different nitric oxide donors [DETA-NO and the NO-releasing prodrugs NCX4040 (NO-aspirin) and JS-K] on the expression of PVR/CD155, using Flow Cytometry and Real-Time PCR. Western-blot and specific inhibitors were employed to investigate the role of soluble guanylyl cyclase/cGMP and activation of the DNA damage response (DDR). RESULTS: Our results indicate that increased levels of nitric oxide can upregulate PVR/CD155 cell surface and mRNA expression in MM cells; in addition, exposure to nitric oxide donors renders myeloma cells more efficient to activate NK cell degranulation and enhances their ability to trigger NK cell-mediated cytotoxicity. We found that activation of the soluble guanylyl cyclase and increased cGMP concentrations by nitric oxide is not involved in the up-regulation of ligand expression. On the contrary, treatment of MM cells with nitric oxide donors correlated with the activation of a DNA damage response pathway and inhibition of the ATM /ATR/Chk1/2 kinase activities by specific inhibitors significantly abrogates up-regulation. CONCLUSIONS: The present study provides evidence that regulation of the PVR/CD155 DNAM-1 ligand expression by nitric oxide may represent an additional immune-mediated mechanism and supports the anti-myeloma activity of nitric oxide donors.
Assuntos
Antígenos de Diferenciação de Linfócitos T/biossíntese , Mieloma Múltiplo/metabolismo , Óxido Nítrico/metabolismo , Receptores Virais/biossíntese , Antígenos de Diferenciação de Linfócitos T/genética , Aspirina/administração & dosagem , Aspirina/análogos & derivados , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ligantes , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Nitrocompostos/administração & dosagem , Receptores Virais/genética , Triazenos/administração & dosagemRESUMO
Engagement of NKG2D and DNAX accessory molecule-1 (DNAM-1) receptors on lymphocytes plays an important role for anticancer response and represents an interesting therapeutic target for pharmacological modulation. In this study, we investigated the effect of inhibitors targeting the glycogen synthase kinase-3 (GSK3) on the expression of NKG2D and DNAM-1 ligands in multiple myeloma (MM) cells. GSK3 is a pleiotropic serine-threonine kinase point of convergence of numerous cell-signaling pathways, able to regulate the proliferation and survival of cancer cells, including MM. We found that inhibition of GSK3 upregulates both MICA protein surface and mRNA expression in MM cells, with little or no effects on the basal expression of the MICB and DNAM-1 ligand poliovirus receptor/CD155. Moreover, exposure to GSK3 inhibitors renders myeloma cells more efficient to activate NK cell degranulation and to enhance the ability of myeloma cells to trigger NK cell-mediated cytotoxicity. We could exclude that increased expression of ß-catenin or activation of the heat shock factor-1 (transcription factors inhibited by active GSK3) is involved in the upregulation of MICA expression, by using RNA interference or viral transduction of constitutive active forms. On the contrary, inhibition of GSK3 correlated with a downregulation of STAT3 activation, a negative regulator of MICA transcription. Both Tyr(705) phosphorylation and binding of STAT3 on MICA promoter are reduced by GSK3 inhibitors; in addition, overexpression of a constitutively active form of STAT3 significantly inhibits MICA upregulation. Thus, we provide evidence that regulation of the NKG2D-ligand MICA expression may represent an additional immune-mediated mechanism supporting the antimyeloma activity of GSK3 inhibitors.
Assuntos
Quinase 3 da Glicogênio Sintase/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Células Matadoras Naturais/imunologia , Mieloma Múltiplo/imunologia , Fator de Transcrição STAT3/imunologia , Western Blotting , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Citotoxicidade Imunológica/imunologia , Citometria de Fluxo , Imunofluorescência , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/imunologia , Mieloma Múltiplo/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/metabolismo , Transdução Genética , TransfecçãoRESUMO
Type 3 innate lymphoid cells (ILC3s) are key regulators of intestinal homeostasis and epithelial barrier integrity. In this issue of the JCI, Cao and colleagues found that a sensor of endoplasmic reticulum (ER) stress, the inositol-requiring kinase 1α/X-box-binding protein 1 (IRE1α/XBP1) pathway, fine-tuned the functions of ILC3s. Activation of IRE1α and XBP1 in ILC3s limited intestinal inflammation in mice and correlated with the efficacy of ustekinumab, an IL-12/IL-23 blocker, in patients with Crohn's disease. These results advance our understanding in the use of ILCs as biomarkers not only to predict disease outcomes but also to indicate the response to biologicals in patients with inflammatory bowel disease.
Assuntos
Estresse do Retículo Endoplasmático , Endorribonucleases , Proteínas Serina-Treonina Quinases , Proteína 1 de Ligação a X-Box , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/imunologia , Animais , Endorribonucleases/metabolismo , Endorribonucleases/genética , Endorribonucleases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Humanos , Camundongos , Estresse do Retículo Endoplasmático/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Transdução de Sinais/imunologia , Doença de Crohn/imunologia , Doença de Crohn/patologia , Doença de Crohn/metabolismo , Imunidade Inata , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologiaRESUMO
2'3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) is the endogenous agonist of STING; as such, cGAMP has powerful immunostimulatory activity, due to its capacity to stimulate type I interferon-mediated immunity. Recent evidence indicates that cancer cells, under certain conditions, can release cGAMP extracellularly, a phenomenon currently considered important for therapeutic responses and tumor rejection. Nonetheless, the mechanisms that regulate cGAMP activity in the extracellular environment are still largely unexplored. In this work, we collected evidence demonstrating that CD38 glycohydrolase can inhibit extracellular cGAMP activity through its direct binding. We firstly used different cell lines and clinical samples to demonstrate a link between CD38 and extracellular cGAMP activity; we then performed extensive in silico molecular modeling and cell-free biochemical assays to show a direct interaction between the catalytic pocket of CD38 and cGAMP. Altogether, our findings expand the current knowledge about the regulation of cGAMP activity.