Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Reprod Biol Endocrinol ; 9: 160, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22192617

RESUMO

BACKGROUND: Variations in maternal care are associated with neonatal stress, hormonal disturbances and reproductive injuries during adulthood. However, the effects of these variations on sex hormones and steroid receptors during ovary development remain undetermined. This study aimed to investigate whether variations in maternal care are able to influence the hormonal profile, follicular dynamics and expression of AR, ER-alpha and ER-beta in the ovaries of UCh rat offspring. METHODS: Twenty-four adult UCh rats, aged 120 days, were randomly divided into two groups (UChA and UChB) and mated. Maternal care was assessed from birth (day 0) to the 10th postnatal day (PND). In adulthood, twenty adult female rats (UChA and UChB offspring; n = 10/group), aged 120 days, were euthanized by decapitation during the morning estrus. RESULTS: UChA females (providing high maternal care) more frequently displayed the behaviors of carrying pups, as well as licking/grooming and arched back nursing cares. Also, mothers providing high care had elevated corticosterone levels. Additionally, offspring receiving low maternal care showed the highest estrous cycle duration, increased corticosterone and 17beta-estradiol levels, overexpression of receptors ER-alpha and ER-beta, increased numbers of primordial, antral and mature follicles and accentuated granulosa cell proliferation. CONCLUSIONS: Our study suggests that low maternal care alters corticosterone and 17beta-estradiol levels, disrupting the estrous cycle and folliculogenesis and differentially regulating the expression of ER-alpha and ER-beta in the ovaries of adult rats.


Assuntos
Ciclo Estral/fisiologia , Hormônios/sangue , Comportamento Materno/fisiologia , Folículo Ovariano/crescimento & desenvolvimento , Ovário/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Corticosterona/sangue , Estradiol/sangue , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Feminino , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Masculino , Folículo Ovariano/citologia , Ratos , Ratos Endogâmicos , Fatores de Tempo
2.
Reprod Biol Endocrinol ; 9: 108, 2011 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-21810236

RESUMO

BACKGROUND: Melatonin is associated with direct or indirect actions upon female reproductive function. However, its effects on sex hormones and steroid receptors during ovulation are not clearly defined. This study aimed to verify whether exposure to long-term melatonin is able to cause reproductive hormonal disturbances as well as their role on sex steroid receptors in the rat ovary, oviduct and uterus during ovulation. METHODS: Twenty-four adult Wistar rats, 60 days old (+/-250 g) were randomly divided into two groups. Control group (Co): received 0.9% NaCl 0.3 mL+95% ethanol 0.04 mL as vehicle; Melatonin-treated group (MEL): received vehicle+melatonin [100 µg/100 g BW/day] both intraperitoneally during 60 days. All animals were euthanized by decapitation during the morning estrus at 4 a.m. RESULTS: Melatonin significantly reduced the plasma levels of LH and 17 beta-estradiol, while urinary 6-sulfatoximelatonin (STM) was increased at the morning estrus. In addition, melatonin promoted differential regulation of the estrogen receptor (ER), progesterone receptor (PR), androgen receptor (AR) and melatonin receptor (MTR) along the reproductive tissues. In ovary, melatonin induced a down-regulation of ER-alpha and PRB levels. Conversely, it was observed that PRA and MT1R were up-regulated. In oviduct, AR and ER-alpha levels were down-regulated, in contrast to high expression of both PRA and PRB. Finally, the ER-beta and PRB levels were down-regulated in uterus tissue and only MT1R was up-regulated. CONCLUSIONS: We suggest that melatonin partially suppress the hypothalamus-pituitary-ovarian axis, in addition, it induces differential regulation of sex steroid receptors in the ovary, oviduct and uterus during ovulation.


Assuntos
Estradiol/sangue , Tubas Uterinas/metabolismo , Hormônio Luteinizante/sangue , Melatonina/farmacologia , Ovário/metabolismo , Receptores de Esteroides/metabolismo , Útero/metabolismo , Animais , Tubas Uterinas/efeitos dos fármacos , Feminino , Ovário/efeitos dos fármacos , Ovulação , Ratos , Ratos Wistar , Receptor MT1 de Melatonina/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Útero/efeitos dos fármacos
3.
Alcohol Clin Exp Res ; 35(8): 1498-508, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21438888

RESUMO

BACKGROUND: Chronic ethanol intake leads to reproductive damage including reactive oxygen species formation, which accelerates the oxidative process. Melatonin is known to regulate the reproductive cycle, food/liquid intake, and it may also act as a potent antioxidant indoleamine. The aim of this study was to verify the effects of alcoholism and melatonin treatment on overall feed efficiency and to analyze its protective role against the oxidative stress in the ovarian tissue of UChB rats (submitted to 10% [v/v] voluntary ethanol consumption). METHODS: Forty adult female rats (n = 10/group) were finally selected for this study: UChB Co: drinking water only; and UChB EtOH: drinking ethanol at 2 to 6 ml/100 g/d + water, both receiving 0.9% NaCl + 95% ethanol 0.04 ml as vehicle. Concomitantly, UChB Co + M and UChB EtOH + M groups were infused with vehicle + melatonin (100 µg/100 g body weight/d) intraperitoneally over 60 days. All animals were euthanized by decapitation during the morning estrus (4 am). RESULTS: Body weight gain was reduced with ethanol plus melatonin after 40 days of treatment. In both melatonin-treated groups, it was observed a reduction in food-derived calories and liquid intake toward the end of treatment. The amount of consumed ethanol dropped during the treatment. Estrous cycle was longer in rats that received both ethanol and melatonin, with prolonged diestrus. Following to oxidative status, lipid hydroperoxide levels were higher in the ovaries of ethanol-preferring rats and decreased after melatonin treatment. Additionally, antioxidant activities of superoxide dismutase, glutathione peroxidase activity, and glutathione reductase activity were increased in melatonin-treated groups. CONCLUSIONS: We suggest that melatonin is able to affect feed efficiency and, conversely, it protects the ovaries against the oxidative stress arising from ethanol consumption.


Assuntos
Antioxidantes/farmacologia , Melatonina/farmacologia , Ovário/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Consumo de Bebidas Alcoólicas/patologia , Animais , Antioxidantes/administração & dosagem , Peso Corporal/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Depressores do Sistema Nervoso Central/toxicidade , Ciclo Estral/efeitos dos fármacos , Etanol/farmacologia , Etanol/toxicidade , Comportamento Alimentar/efeitos dos fármacos , Feminino , Índice Glicêmico/efeitos dos fármacos , Injeções Intraperitoneais , Melatonina/administração & dosagem , Ovário/lesões , Substâncias Protetoras/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA