RESUMO
Rhodopseudomonas palustris is an alphaproteobacterium with impressive metabolic versatility, capable of oxidizing ferrous iron to fix carbon dioxide using light energy. Photoferrotrophic iron oxidation is one of the most ancient metabolisms, sustained by the pio operon coding for three proteins: PioB and PioA, which form an outer-membrane porin-cytochrome complex that oxidizes iron outside of the cell and transfers the electrons to the periplasmic high potential iron-sulfur protein (HIPIP) PioC, which delivers them to the light-harvesting reaction center (LH-RC). Previous studies have shown that PioA deletion is the most detrimental for iron oxidation, while, the deletion of PioC resulted in only a partial loss. The expression of another periplasmic HiPIP, designated Rpal_4085, is strongly upregulated in photoferrotrophic conditions, making it a strong candidate for a PioC substitute. However, it is unable to reduce the LH-RC. In this work we used NMR spectroscopy to map the interactions between PioC, PioA, and the LH-RC, identifying the key amino acid residues involved. We also observed that PioA directly reduces the LH-RC, and this is the most likely substitute upon PioC deletion. By contrast, Rpal_4085 demontrated significant electronic and structural differences from PioC. These differences likely explain its inability to reduce the LH-RC and highlight its distinct functional role. Overall, this work reveals the functional resilience of the pio operon pathway and further highlights the use of paramagnetic NMR for understanding key biological processes.
Assuntos
Ferro , Rodopseudomonas , Ferro/metabolismo , Oxirredução , Rodopseudomonas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismoRESUMO
Cytochromes-c are ubiquitous heme proteins with enormous impact at the cellular level, being key players in metabolic processes such as electron transfer chains and apoptosis. The assembly of these proteins requires maturation systems that catalyse the formation of the covalent thioether bond between two cysteine residues and the vinyl groups of the heme. System III is the maturation system present in Eukaryotes, designated CcHL or HCCS. This System requires a specific amino acid sequence in the apocytochrome to be recognized as a substrate and for heme insertion. To explore the recognition mechanisms of CcHL, the bacterial tetraheme cytochrome STC from Shewanella oneidensis MR-1, which is not a native substrate for System III, was mutated to be identified as a substrate. The results obtained show that it is possible to convert a bacterial cytochrome as a substrate by CcHL, but the presence of the recognition sequence is not the only factor that induces the maturation of a holocytochrome by System III. The location of this sequence in the polypeptide also plays a role in the maturation of the c-type cytochrome. Furthermore, CcHL appears to be able to catalyse the binding of only one heme per polypeptide chain, being unable to assemble multiheme cytochromes c, in contrast with bacterial maturation systems.