Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34686598

RESUMO

Phase transitions are emergent phenomena where microscopic interactions drive a disordered system into a collectively ordered phase. Near the boundary between two phases, the system can exhibit critical, scale-invariant behavior. Here, we report on a second-order phase transition accompanied by critical behavior in a system of warm cesium spins driven by linearly polarized light. The ordered phase exhibits macroscopic magnetization when the interactions between the spins become dominant. We measure the phase diagram of the system and observe the collective behavior near the phase boundaries, including power-law dependence of the magnetization and divergence of the susceptibility. Out of equilibrium, we observe a critical slowdown of the spin response time by two orders of magnitude, exceeding 5 s near the phase boundary. This work establishes a controlled platform for investigating equilibrium and nonequilibrium properties of magnetic phases.

2.
Phys Rev Lett ; 131(3): 033601, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37540860

RESUMO

Efficient synchronization of single photons that are compatible with narrow band atomic transitions is an outstanding challenge, which could prove essential for photonic quantum information processing. Here we report on the synchronization of independently generated single photons using a room-temperature atomic quantum memory. The photon source and the memory are interconnected by fibers and employ the same ladder-level atomic scheme. We store and retrieve the heralded single photons with end-to-end efficiency of η_{e2e}=25% and final antibunching of g_{h}^{(2)}=0.023. Our synchronization process results in an over tenfold increase in the photon-pair coincidence rate, reaching a rate of more than 1000 detected synchronized photon pairs per second. The indistinguishability of the synchronized photons is verified by a Hong-Ou-Mandel interference measurement.

3.
Opt Express ; 28(22): 32738-32749, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114952

RESUMO

We describe a fiber Raman amplifier for nanosecond and sub-nanosecond pulses centered around 1260 nm. The amplification takes place inside a 4.5-m-long polarization-maintaining phosphorus-doped fiber, pumped at 1080 nm by 3-ns-long pulses with a repetition rate of 200 kHz and up to 1.75 kW peak power. The input seed pulses are of sub-mW peak-power and minimal duration of 0.25 ns, carved out of a continuous-wave laser with sub-MHz linewidth. We obtain linearly polarized output pulses with peak powers of up to 1.4 kW, corresponding to peak-power conversion efficiency of over 80%. An ultrahigh small signal gain of 90 dB is achieved, and the signal-to-noise ratio 3 dB below the saturation power is above 20 dB. No significant temporal and spectral broadening is observed for output pulses up to 400 W peak power, and broadening at higher powers can be reduced by phase modulation of the seed pulse. Thus, nearly-transform-limited pulses with peak power up to 1 kW are obtained. Finally, we demonstrate the generation of pulses with controllable frequency chirp, pulses with variable width, and double pulses. This amplifier is thus suitable for coherent control of narrow atomic resonances, especially for the fast and coherent excitation of rubidium atoms to Rydberg states. These abilities open the way towards several important applications in quantum non-linear optics.

4.
Opt Express ; 28(22): 33708-33717, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33115030

RESUMO

Bessel beams are renowned members of a wide family of non-diffracting (propagation-invariant) fields. We report on experiments showing that non-diffracting fields are also immune to diffusion. We map the phase and magnitude of structured laser fields onto the spatial coherence between two internal states of warm atoms undergoing diffusion. We measure the field after a controllable, effective, diffusion time by continuously generating light from the spatial coherence. The coherent diffusion of Bessel-Gaussian fields and more intricate, non-diffracting fields is quantitatively analyzed and directly compared to that of diffracting fields. To elucidate the origin of diffusion invariance, we show results for non-diffracting fields whose phase pattern we flatten.

5.
Phys Rev Lett ; 124(4): 043602, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32058754

RESUMO

Nuclear spins of noble-gas atoms are exceptionally isolated from the environment and can maintain their quantum properties for hours at room temperature. Here we develop a mechanism for entangling two such distant macroscopic ensembles by using coherent light input. The interaction between the light and the noble-gas spins in each ensemble is mediated by spin-exchange collisions with alkali-metal spins, which are only virtually excited. The relevant conditions for experimental realizations with ^{3}He or ^{129}Xe are outlined.

6.
Phys Rev Lett ; 123(17): 173203, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31702257

RESUMO

The resonant absorption of light by an ensemble of absorbers decreases when the resonance is inhomogeneously broadened. Recovering the lost absorption cross section is of great importance for various applications of light-matter interactions, particularly in quantum optics, but no recovery mechanism has yet been identified and successfully demonstrated. Here, we formulate the limit set by the inhomogeneity on the absorption, and present a mechanism able to circumvent this limit and fully recover the homogeneous absorption of the ensemble. We experimentally study this mechanism using two different level schemes in atomic vapors and demonstrate up to fivefold enhancement of the absorption above the inhomogeneous limit. Our scheme relies on light shifts induced by auxiliary fields and is thus applicable to various physical systems and inhomogeneity mechanisms.

7.
Nature ; 502(7469): 71-5, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24067613

RESUMO

The fundamental properties of light derive from its constituent particles--massless quanta (photons) that do not interact with one another. However, it has long been known that the realization of coherent interactions between individual photons, akin to those associated with conventional massive particles, could enable a wide variety of novel scientific and engineering applications. Here we demonstrate a quantum nonlinear medium inside which individual photons travel as massive particles with strong mutual attraction, such that the propagation of photon pairs is dominated by a two-photon bound state. We achieve this through dispersive coupling of light to strongly interacting atoms in highly excited Rydberg states. We measure the dynamical evolution of the two-photon wavefunction using time-resolved quantum state tomography, and demonstrate a conditional phase shift exceeding one radian, resulting in polarization-entangled photon pairs. Particular applications of this technique include all-optical switching, deterministic photonic quantum logic and the generation of strongly correlated states of light.

8.
Nature ; 488(7409): 57-60, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22832584

RESUMO

The realization of strong nonlinear interactions between individual light quanta (photons) is a long-standing goal in optical science and engineering, being of both fundamental and technological significance. In conventional optical materials, the nonlinearity at light powers corresponding to single photons is negligibly weak. Here we demonstrate a medium that is nonlinear at the level of individual quanta, exhibiting strong absorption of photon pairs while remaining transparent to single photons. The quantum nonlinearity is obtained by coherently coupling slowly propagating photons to strongly interacting atomic Rydberg states in a cold, dense atomic gas. Our approach paves the way for quantum-by-quantum control of light fields, including single-photon switching, all-optical deterministic quantum logic and the realization of strongly correlated many-body states of light.

9.
Phys Rev Lett ; 119(11): 113601, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28949230

RESUMO

Effective cavities can be optically induced in atomic media and employed to strengthen optical nonlinearities. Here we study the integration of induced cavities with a photonic quantum gate based on Rydberg blockade. Accounting for loss in the atomic medium, we calculate the corresponding finesse and gate infidelity. Our analysis shows that the conventional limits imposed by the blockade optical depth are mitigated by the induced cavity in long media, thus establishing the total optical depth of the medium as a complementary resource.

10.
Opt Express ; 23(5): 6379-91, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836858

RESUMO

We suggest a scheme to manipulate paraxial diffraction by utilizing the dependency of a four-wave mixing process on the relative angle between the light fields. A microscopic model for four-wave mixing in a Λ-type level structure is introduced and compared to recent experimental data. We show that images with feature size as low as 10 µm can propagate with very little or even negative diffraction. The mechanism is completely different from that conserving the shape of spatial solitons in nonlinear media, as here diffraction is suppressed for arbitrary spatial profiles. At the same time, the gain inherent to the nonlinear process prevents loss and allows for operating at high optical depths. Our scheme does not rely on atomic motion and is thus applicable to both gaseous and solid media.

11.
Phys Rev Lett ; 115(11): 113003, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26406827

RESUMO

Random spin-exchange collisions in warm alkali vapor cause rapid decoherence and act to equilibrate the spin state of the atoms in the vapor. In contrast, here we demonstrate experimentally and theoretically a coherent coupling of one alkali species to another species, mediated by these random collisions. We show that the minor species (potassium) inherits the magnetic properties of the dominant species (rubidium), including its lifetime (T_{1}), coherence time (T_{2}), gyromagnetic ratio, and spin-exchange relaxation-free magnetic-field threshold. We further show that this coupling can be completely controlled by varying the strength of the magnetic field. Finally, we explain these phenomena analytically by mode mixing of the two species via spin-exchange collisions.

12.
Opt Lett ; 38(8): 1203-5, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23595431

RESUMO

The close relation between the processes of paraxial diffraction and coherent diffusion is reflected in the similarity between their shape-preserving solutions, notably the Gaussian modes. Differences between these solutions enter only for high-order modes. Here we experimentally study the behavior of shape-preserving high-order modes of coherent diffusion, known as "elegant" modes, and contrast them with the nonshape-preserving evolution of the corresponding "standard" modes of optical diffraction. Diffusion of the light field is obtained by mapping it onto the atomic coherence field of a diffusing vapor in a storage-of-light setup. The growth of the elegant mode fits well the theoretical expectations.

13.
Science ; 381(6654): 193-198, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37440622

RESUMO

Vortices are topologically nontrivial defects that generally originate from nonlinear field dynamics. All-optical generation of photonic vortices-phase singularities of the electromagnetic field-requires sufficiently strong nonlinearity that is typically achieved in the classical optics regime. We report on the realization of quantum vortices of photons that result from a strong photon-photon interaction in a quantum nonlinear optical medium. The interaction causes faster phase accumulation for copropagating photons, producing a quantum vortex-antivortex pair within the two-photon wave function. For three photons, the formation of vortex lines and a central vortex ring confirms the existence of a genuine three-photon interaction. The wave function topology, governed by two- and three-photon bound states, imposes a conditional phase shift of π per photon, a potential resource for deterministic quantum logic operations.

14.
Sci Adv ; 9(1): eadf1070, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608121

RESUMO

We propose heat machines that are nonlinear, coherent, and closed systems composed of few field (oscillator) modes. Their thermal-state input is transformed by nonlinear Kerr interactions into nonthermal (non-Gaussian) output with controlled quantum fluctuations and the capacity to deliver work in a chosen mode. These machines can provide an output with strongly reduced phase and amplitude uncertainty that may be useful for sensing or communications in the quantum domain. They are experimentally realizable in optomechanical cavities where photonic and phononic modes are coupled by a Josephson qubit or in cold gases where interactions between photons are transformed into dipole-dipole interacting Rydberg atom polaritons. This proposed approach is a step toward the bridging of quantum and classical coherent and thermodynamic descriptions.

15.
Sci Adv ; 7(14)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33811073

RESUMO

Nuclear spins of noble gases feature extremely long coherence times but are inaccessible to optical photons. Here, we realize a coherent interface between light and noble-gas spins that is mediated by alkali atoms. We demonstrate the optical excitation of the noble-gas spins and observe the coherent back action on the light in the form of high-contrast two-photon spectra. We report on a record two-photon linewidth of 5 ± 0.7 mHz above room temperature, corresponding to a 1-min coherence time. This experiment provides a demonstration of coherent bidirectional coupling between light and noble-gas spins, rendering their long-lived spin coherence accessible for manipulations in the optical domain.

16.
Opt Express ; 18(18): 18832-8, 2010 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-20940776

RESUMO

We experimentally demonstrate an optical pumping technique to pump a dilute rubidium vapor into the m(F) = 0 ground states. The technique utilizes selection rules that forbid the excitation of the m(F) = 0 states by linearly-polarized light. A substantial increase in the transparency contrast of the coherent-population-trapping resonance used for frequency standards is demonstrated.

17.
Sci Adv ; 6(45)2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33148652

RESUMO

The periodicity inherent to any interferometric signal entails a fundamental trade-off between sensitivity and dynamic range of interferometry-based sensors. Here, we develop a methodology for substantially extending the dynamic range of such sensors without compromising their sensitivity, stability, and bandwidth. The scheme is based on simultaneous operation of two nearly identical interferometers, providing a moiré-like period much larger than 2π and benefiting from close-to-maximal sensitivity and from suppression of common-mode noise. The methodology is highly suited to atom interferometers, which offer record sensitivities in measuring gravito-inertial forces but suffer from limited dynamic range. We experimentally demonstrate an atom interferometer with a dynamic-range enhancement of more than an order of magnitude in a single shot and more than three orders of magnitude within a few shots for both static and dynamic signals. This approach can considerably improve the operation of interferometric sensors in challenging, uncertain, or rapidly varying conditions.

18.
Opt Express ; 17(19): 16776-82, 2009 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-19770894

RESUMO

A new magnetometry method based on electromagnetic induced transparency (EIT) with maximally polarized states is demonstrated. An EIT hyperfine resonance, comprising the m(F)=F state (end-state), is observed at a non-zero angle between the laser beam and the magnetic field. The method takes advantage of the process of end-state pumping, a well-known rival of simpler EIT magnetometry schemes, and therefore benefits at a high laser power. An experimental demonstration and a numerical analysis of the magnetometry method are presented. The analysis points on a clear sensitivity advantage of the end-state EIT magnetometer.

19.
Nat Commun ; 9(1): 2074, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29849088

RESUMO

Light storage, the controlled and reversible mapping of photons onto long-lived states of matter, enables memory capability in optical quantum networks. Prominent storage media are warm alkali vapors due to their strong optical coupling and long-lived spin states. In a dense gas, the random atomic collisions dominate the lifetime of the spin coherence, limiting the storage time to a few milliseconds. Here we present and experimentally demonstrate a storage scheme that is insensitive to spin-exchange collisions, thus enabling long storage times at high atomic densities. This unique property is achieved by mapping the light field onto spin orientation within a decoherence-free subspace of spin states. We report on a record storage time of 1 s in room-temperature cesium vapor, a 100-fold improvement over existing storage schemes. Furthermore, our scheme lays the foundations for hour-long quantum memories using rare-gas nuclear spins.

20.
Sci Adv ; 4(1): eaap8598, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29349302

RESUMO

Future quantum photonic networks require coherent optical memories for synchronizing quantum sources and gates of probabilistic nature. We demonstrate a fast ladder memory (FLAME) mapping the optical field onto the superposition between electronic orbitals of rubidium vapor. Using a ladder-level system of orbital transitions with nearly degenerate frequencies simultaneously enables high bandwidth, low noise, and long memory lifetime. We store and retrieve 1.7-ns-long pulses, containing 0.5 photons on average, and observe short-time external efficiency of 25%, memory lifetime (1/e) of 86 ns, and below 10-4 added noise photons. Consequently, coupling this memory to a probabilistic source would enhance the on-demand photon generation probability by a factor of 12, the highest number yet reported for a noise-free, room temperature memory. This paves the way toward the controlled production of large quantum states of light from probabilistic photon sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA