Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1747, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243048

RESUMO

American football has become the focus of numerous studies highlighting a growing concern that cumulative exposure to repetitive, sports-related head acceleration events (HAEs) may have negative consequences for brain health, even in the absence of a diagnosed concussion. In this longitudinal study, brain functional connectivity was analyzed in a cohort of high school American football athletes over a single play season and compared against participants in non-collision high school sports. Football athletes underwent four resting-state functional magnetic resonance imaging sessions: once before (pre-season), twice during (in-season), and once 34-80 days after the contact activities play season ended (post-season). For each imaging session, functional connectomes (FCs) were computed for each athlete and compared across sessions using a metric reflecting the (self) similarity between two FCs. HAEs were monitored during all practices and games throughout the season using head-mounted sensors. Relative to the pre-season scan session, football athletes exhibited decreased FC self-similarity at the later in-season session, with apparent recovery of self-similarity by the time of the post-season session. In addition, both within and post-season self-similarity was correlated with cumulative exposure to head acceleration events. These results suggest that repetitive exposure to HAEs produces alterations in functional brain connectivity and highlight the necessity of collision-free recovery periods for football athletes.


Assuntos
Futebol Americano , Imageamento por Ressonância Magnética , Humanos , Estudos Longitudinais , Encéfalo/diagnóstico por imagem , Instituições Acadêmicas , Atletas
2.
Cell Host Microbe ; 31(12): 1950-1951, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38096786

RESUMO

Exclusive enteral nutrition, a diet lacking fiber, is used to treat pediatric Crohn's disease. In this issue of Cell Host & Microbe, Kuffa et al. find that a fiber-deficient diet thins the mucus layer and alters microbial cross-feeding, causing pro-inflammatory Mucispirillum to move away from the epithelium, which ameliorates colitis.


Assuntos
Doença de Crohn , Microbiota , Criança , Humanos , Doença de Crohn/terapia , Nutrição Enteral , Dieta , Fibras na Dieta
3.
Front Physiol ; 14: 1134804, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875021

RESUMO

Blood arrival time and blood transit time are useful metrics in characterizing hemodynamic behaviors in the brain. Functional magnetic resonance imaging in combination with a hypercapnic challenge has been proposed as a non-invasive imaging tool to determine blood arrival time and replace dynamic susceptibility contrast (DSC) magnetic resonance imaging, a current gold-standard imaging tool with the downsides of invasiveness and limited repeatability. Using a hypercapnic challenge, blood arrival times can be computed by cross-correlating the administered CO2 signal with the fMRI signal, which increases during elevated CO2 due to vasodilation. However, whole-brain transit times derived from this method can be significantly longer than the known cerebral transit time for healthy subjects (nearing 20 s vs. the expected 5-6 s). To address this unrealistic measurement, we here propose a novel carpet plot-based method to compute improved blood transit times derived from hypercapnic blood oxygen level dependent fMRI, demonstrating that the method reduces estimated blood transit times to an average of 5.32 s. We also investigate the use of hypercapnic fMRI with cross-correlation to compute the venous blood arrival times in healthy subjects and compare the computed delay maps with DSC-MRI time to peak maps using the structural similarity index measure (SSIM). The strongest delay differences between the two methods, indicated by low structural similarity index measure, were found in areas of deep white matter and the periventricular region. SSIM measures throughout the remainder of the brain reflected a similar arrival sequence derived from the two methods despite the exaggerated spread of voxel delays computed using CO2 fMRI.

4.
J Cereb Blood Flow Metab ; 42(6): 1091-1103, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35037498

RESUMO

It is commonly believed that cerebrospinal fluid (CSF) movement is facilitated by blood vessel wall movements (i.e., hemodynamic oscillations) in the brain. A coherent pattern of low frequency hemodynamic oscillations and CSF movement was recently found during non-rapid eye movement (NREM) sleep via functional MRI. This finding raises other fundamental questions: 1) the explanation of coupling between hemodynamic oscillations and CSF movement from fMRI signals; 2) the existence of the coupling during wakefulness; 3) the direction of CSF movement. In this resting state fMRI study, we proposed a mechanical model to explain the coupling between hemodynamics and CSF movement through the lens of fMRI. Time delays between CSF movement and global hemodynamics were calculated. The observed delays between hemodynamics and CSF movement match those predicted by the model. Moreover, by conducting separate fMRI scans of the brain and neck, we confirmed the low frequency CSF movement at the fourth ventricle is bidirectional. Our finding also demonstrates that CSF movement is facilitated by changes in cerebral blood volume mainly in the low frequency range, even when the individual is awake.


Assuntos
Imageamento por Ressonância Magnética , Vigília , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Hemodinâmica/fisiologia
5.
Sci Rep ; 11(1): 7011, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772060

RESUMO

A "carpet plot" is a 2-dimensional plot (time vs. voxel) of scaled fMRI voxel intensity values. Low frequency oscillations (LFOs) can be successfully identified from BOLD fMRI and used to study characteristics of neuronal and physiological activity. Here, we evaluate the use of carpet plots paired with a developed slope-detection algorithm as a means to study LFOs in resting state fMRI (rs-fMRI) data with the help of dynamic susceptibility contrast (DSC) MRI data. Carpet plots were constructed by ordering voxels according to signal delay time for each voxel. The slope-detection algorithm was used to identify and calculate propagation times, or "transit times", of tilted vertical edges across which a sudden signal change was observed. We aim to show that this metric has applications in understanding LFOs in fMRI data, possibly reflecting changes in blood flow speed during the scan, and for evaluating alternative blood-tracking contrast agents such as inhaled CO2. We demonstrate that the propagations of LFOs can be visualized and automatically identified in a carpet plot as tilted lines of sudden intensity change. Resting state carpet plots produce edges with transit times similar to those of DSC carpet plots. Additionally, resting state carpet plots indicate that edge transit times vary at different time points during the scan.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Sistema Cardiovascular/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Hemodinâmica/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto , Encéfalo/irrigação sanguínea , Encéfalo/fisiologia , Humanos , Oxigênio/sangue , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA