Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Can J Microbiol ; 68(10): 615-621, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35921682

RESUMO

Salmonella enterica and Escherichia coli use the inner membrane transporter DctA to import the pyrimidine biosynthetic pathway intermediate orotate from the environment. To study the regulation of dctA expression, we used an S. enterica serovar Typhimurium pyrimidine auxotroph to select a mutant that could grow in an otherwise nonpermissive culture medium containing glucose and a low concentration of orotate. Whole genome sequencing revealed a point mutation upstream of dctA in the putative cyclic AMP receptor protein (CRP) binding site. The C→T transition converted the least favourable base to the most favourable base for CRP-DNA affinity. A dctA::lux transcriptional fusion confirmed that the mutant dctA promoter gained responsiveness to CRP even in the presence of glucose. Moreover, dctA expression was higher in the mutant than the wild type in the presence of alternative carbon sources that activate CRP.


Assuntos
Proteínas de Escherichia coli , Salmonella typhimurium , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Carbono/metabolismo , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Proteínas de Membrana Transportadoras/genética , Mutação , Pirimidinas/metabolismo , Salmonella typhimurium/genética , Sorogrupo
2.
PLoS Pathog ; 15(10): e1008003, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31581229

RESUMO

Specific Escherichia coli isolates lysogenised with prophages that express Shiga toxin (Stx) can be a threat to human health, with cattle being an important natural reservoir. In many countries the most severe pathology is associated with enterohaemorrhagic E. coli (EHEC) serogroups that express Stx subtype 2a. In the United Kingdom, phage type (PT) 21/28 O157 strains have emerged as the predominant cause of life-threatening EHEC infections and this phage type commonly encodes both Stx2a and Stx2c toxin types. PT21/28 is also epidemiologically linked to super-shedding (>103 cfu/g of faeces) which is significant for inter-animal transmission and human infection as demonstrated using modelling studies. We demonstrate that Stx2a is the main toxin produced by stx2a+/stx2c+ PT21/28 strains induced with mitomycin C and this is associated with more rapid induction of gene expression from the Stx2a-encoding prophage compared to that from the Stx2c-encoding prophage. Bacterial supernatants containing either Stx2a and/or Stx2c were demonstrated to restrict growth of bovine gastrointestinal organoids with no restriction when toxin production was not induced or prevented by mutation. Isogenic strains that differed in their capacity to produce Stx2a were selected for experimental oral colonisation of calves to assess the significance of Stx2a for both super-shedding and transmission between animals. Restoration of Stx2a expression in a PT21/28 background significantly increased animal-to-animal transmission and the number of sentinel animals that became super-shedders. We propose that while both Stx2a and Stx2c can restrict regeneration of the epithelium, it is the relatively rapid and higher levels of Stx2a induction, compared to Stx2c, that have contributed to the successful emergence of Stx2a+ E. coli isolates in cattle in the last 40 years. We propose a model in which Stx2a enhances E. coli O157 colonisation of in-contact animals by restricting regeneration and turnover of the colonised gastrointestinal epithelium.


Assuntos
Doenças dos Bovinos/transmissão , Células Epiteliais/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia coli O157/efeitos dos fármacos , Íleo/microbiologia , Organoides/microbiologia , Toxina Shiga II/farmacologia , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/isolamento & purificação , Íleo/citologia , Íleo/metabolismo , Masculino , Organoides/crescimento & desenvolvimento , Organoides/metabolismo , Virulência
3.
Environ Sci Technol ; 55(22): 15276-15286, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34738785

RESUMO

Wastewater based epidemiology (WBE) has become an important tool during the COVID-19 pandemic, however the relationship between SARS-CoV-2 RNA in wastewater treatment plant influent (WWTP) and cases in the community is not well-defined. We report here the development of a national WBE program across 28 WWTPs serving 50% of the population of Scotland, including large conurbations, as well as low-density rural and remote island communities. For each WWTP catchment area, we quantified spatial and temporal relationships between SARS-CoV-2 RNA in wastewater and COVID-19 cases. Daily WWTP SARS-CoV-2 influent viral RNA load, calculated using daily influent flow rates, had the strongest correlation (ρ > 0.9) with COVID-19 cases within a catchment. As the incidence of COVID-19 cases within a community increased, a linear relationship emerged between cases and influent viral RNA load. There were significant differences between WWTPs in their capacity to predict case numbers based on influent viral RNA load, with the limit of detection ranging from 25 cases for larger plants to a single case in smaller plants. SARS-CoV-2 viral RNA load can be used to predict the number of cases detected in the WWTP catchment area, with a clear statistically significant relationship observed above site-specific case thresholds.


Assuntos
COVID-19 , Purificação da Água , Humanos , Pandemias , RNA Viral , SARS-CoV-2 , Carga Viral , Águas Residuárias
4.
J Clin Microbiol ; 54(1): 190-3, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26511736

RESUMO

Despite advances in laboratory design, professional training, and workplace biosafety guidelines, laboratory-acquired infections continue to occur. Effective tools are required to investigate cases and prevent future illness. Here, we demonstrate the value of whole-genome sequencing as a tool for the identification and source attribution of laboratory-acquired salmonellosis.


Assuntos
Exposição Ocupacional , Infecções por Salmonella/diagnóstico , Salmonella typhimurium/isolamento & purificação , Adulto , Idoso , Pré-Escolar , Feminino , Genoma Bacteriano , Genótipo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Infecções por Salmonella/microbiologia , Salmonella typhimurium/classificação , Salmonella typhimurium/genética , Análise de Sequência de DNA
5.
Animals (Basel) ; 13(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37685059

RESUMO

Shiga toxin-producing E. coli (STEC) infections associated with wildlife are increasing globally, highlighting many 'spillover' species as important reservoirs for these zoonotic pathogens. A human outbreak of STEC serogroup O157 in 2015 in Scotland, associated with the consumption of venison meat products, highlighted several knowledge gaps, including the prevalence of STEC O157 in Scottish wild deer and the potential risk to humans from wild deer isolates. In this study, we undertook a nationwide survey of wild deer in Scotland and determined that the prevalence of STEC O157 in wild deer is low 0.28% (95% confidence interval = 0.06-0.80). Despite the low prevalence of STEC O157 in Scottish wild deer, identified isolates were present in deer faeces at high levels (>104 colony forming units/g faeces) and had high human pathogenic potential based on whole genome sequencing and virulence gene profiling. A retrospective epidemiological investigation also identified one wild deer isolate from this study as a possible source of a Scottish human outbreak in 2017. These results emphasise the importance of food hygiene practices during the processing of wild deer carcasses for human consumption.

6.
Vaccines (Basel) ; 11(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36992095

RESUMO

The bacterium Coxiella burnetii can cause the disease Q-fever in a wide range of animal hosts. Ruminants, including sheep, are thought to play a pivotal role in the transmission of C. burnetii to humans; however, the only existing livestock vaccine, namely, Coxevac® (Ceva Animal Health Ltd., Libourne, France), a killed bacterin vaccine based on phase I C. burnetii strain Nine-Mile, is only approved for use in goats and cattle. In this study, a pregnant ewe challenge model was used to determine the protective effects of Coxevac® and an experimental bacterin vaccine based on phase II C. burnetii against C. burnetii challenge. Prior to mating, ewes (n = 20 per group) were vaccinated subcutaneously with either Coxevac®, the phase II vaccine, or were unvaccinated. A subset of pregnant ewes (n = 6) from each group was then challenged 151 days later (~100 days of gestation) with 106 infectious mouse doses of C. burnetii, Nine-Mile strain RSA493. Both vaccines provided protection against C. burnetii challenge as measured by reductions in bacterial shedding in faeces, milk and vaginal mucus, and reduced abnormal pregnancies, compared to unvaccinated controls. This work highlights that the phase I vaccine Coxevac® can protect ewes against C. burnetii infection. Furthermore, the phase II vaccine provided comparable levels of protection and may offer a safer and cost-effective alternative to the currently licensed vaccine.

7.
Front Immunol ; 14: 1257722, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954609

RESUMO

Coxiella burnetii is an important zoonotic bacterial pathogen of global importance, causing the disease Q fever in a wide range of animal hosts. Ruminant livestock, in particular sheep and goats, are considered the main reservoir of human infection. Vaccination is a key control measure, and two commercial vaccines based on formalin-inactivated C. burnetii bacterins are currently available for use in livestock and humans. However, their deployment is limited due to significant reactogenicity in individuals previously sensitized to C. burnetii antigens. Furthermore, these vaccines interfere with available serodiagnostic tests which are also based on C. burnetii bacterin antigens. Defined subunit antigen vaccines offer significant advantages, as they can be engineered to reduce reactogenicity and co-designed with serodiagnostic tests to allow discrimination between vaccinated and infected individuals. This study aimed to investigate the diversity of antibody responses to C. burnetii vaccination and/or infection in cattle, goats, humans, and sheep through genome-wide linear epitope mapping to identify candidate vaccine and diagnostic antigens within the predicted bacterial proteome. Using high-density peptide microarrays, we analyzed the seroreactivity in 156 serum samples from vaccinated and infected individuals to peptides derived from 2,092 open-reading frames in the C. burnetii genome. We found significant diversity in the antibody responses within and between species and across different types of C. burnetii exposure. Through the implementation of three different vaccine candidate selection methods, we identified 493 candidate protein antigens for protein subunit vaccine design or serodiagnostic evaluation, of which 65 have been previously described. This is the first study to investigate multi-species seroreactivity against the entire C. burnetii proteome presented as overlapping linear peptides and provides the basis for the selection of antigen targets for next-generation Q fever vaccines and diagnostic tests.


Assuntos
Coxiella burnetii , Febre Q , Humanos , Animais , Ovinos , Bovinos , Coxiella burnetii/genética , Febre Q/prevenção & controle , Febre Q/veterinária , Formação de Anticorpos , Epitopos , Proteoma , Mapeamento de Epitopos , Vacinação/veterinária , Ruminantes , Cabras , Peptídeos , Vacinas Bacterianas
8.
Microb Genom ; 7(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34751643

RESUMO

The human zoonotic pathogen Escherichia coli O157:H7 is defined by its extensive prophage repertoire including those that encode Shiga toxin, the factor responsible for inducing life-threatening pathology in humans. As well as introducing genes that can contribute to the virulence of a strain, prophage can enable the generation of large-chromosomal rearrangements (LCRs) by homologous recombination. This work examines the types and frequencies of LCRs across the major lineages of the O157:H7 serotype. We demonstrate that LCRs are a major source of genomic variation across all lineages of E. coli O157:H7 and by using both optical mapping and Oxford Nanopore long-read sequencing prove that LCRs are generated in laboratory cultures started from a single colony and that these variants can be recovered from colonized cattle. LCRs are biased towards the terminus region of the genome and are bounded by specific prophages that share large regions of sequence homology associated with the recombinational activity. RNA transcriptional profiling and phenotyping of specific structural variants indicated that important virulence phenotypes such as Shiga-toxin production, type-3 secretion and motility can be affected by LCRs. In summary, E. coli O157:H7 has acquired multiple prophage regions over time that act to continually produce structural variants of the genome. These findings raise important questions about the significance of this prophage-mediated genome contingency to enhance adaptability between environments.


Assuntos
Escherichia coli O157 , Animais , Bovinos , Escherichia coli O157/genética , Variação Estrutural do Genoma , Prófagos/genética , Toxina Shiga/genética , Toxina Shiga II/genética
9.
Acta Biomater ; 77: 85-95, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30030173

RESUMO

To decouple the effects of collagen fiber density and network mechanics on cancer cell behavior, we describe a highly tunable in vitro 3D interpenetrating network (IPN) consisting of a primary fibrillar collagen network reinforced by a secondary visible light-mediated thiol-ene poly(ethylene glycol) (PEG) network. This PEG/Collagen IPN platform is cytocompatible, inherently bioactive via native cellular adhesion sites, and mechanically tunable over several orders of magnitude-mimicking both healthy and cancerous breast tissue. Furthermore, we use the PEG/Collagen IPN platform to investigate the effect of mechanical confinement on cancer cell behavior as it is hypothesized that cells within tumors that have yet to invade into the surrounding tissue experience mechanical confinement. We find that mechanical confinement via the IPN impairs behavior characteristic of malignant cells (i.e., viability, proliferation, and cellular motility) in the triple negative breast cancer cell line MDA.MB.231, and is more effective than removal of soluble growth signals. The PEG/Collagen IPN platform is a useful tool for studying mechanotransductive signaling pathways and motivates further investigation into the role of mechanical confinement in cancer progression. STATEMENT OF SIGNIFICANCE: In this study, we have developed, optimized, and applied a novel 3D in vitro cell culture platform composed of an interpenetrating network (IPN) that is both mechanically tunable and inherently bioactive. The IPN consists of a primary fibrillar collagen type-1 network reinforced by a secondary thiol-ene poly(ethylene glycol) (PEG) network. The IPNs are formed via a novel strategy in which cell-laden collagen gels are formed first, and soluble PEG monomers are added later and crosslinked via visible light. This approach ensures that the collagen gels contain a fibrillar architecture similar to the collagen architecture present in vivo. We applied our IPN platform to study the effect of mechanical confinement on cancer cell behavior and found that it inhibits malignant-like behavior.


Assuntos
Colágeno/química , Polietilenoglicóis/química , Neoplasias de Mama Triplo Negativas/patologia , Materiais Biocompatíveis/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Difusão , Matriz Extracelular/efeitos dos fármacos , Análise de Elementos Finitos , Humanos , Hidrogéis/farmacologia , Luz , Teste de Materiais , Microscopia Eletrônica de Varredura , Transdução de Sinais , Estresse Mecânico , Engenharia Tecidual , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Microambiente Tumoral
10.
Genome Announc ; 5(4)2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-28126943

RESUMO

The genome of Salmonella enterica subspecies enterica serovar Enteritidis phage type 8 strain EN1660, isolated from an outbreak in Thunder Bay, Canada, was sequenced to 46-fold coverage using an Illumina MiSeq with 300-bp paired-end sequencing chemistry to produce 28 contigs with an N50 value of 490,721 bp.

11.
Genome Announc ; 3(4)2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26272568

RESUMO

Here, we report the first draft genome sequence of Salmonella enterica subsp. enterica serovar Livingstone. This S. Livingstone strain CKY-S4 displayed biofilm formation and cellulose production and could persist on lettuce. This genome may help the study of mechanisms by which enteric pathogens colonize food crops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA