Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105672, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272229

RESUMO

"Allosteric" was first introduced to mean the other site (i.e., a site distinct from the active or orthosteric site), an adjective for "regulation" to imply a regulatory outcome resulting from ligand binding at another site. That original idea outlines a system with two ligand-binding events at two distinct locations on a macromolecule (originally a protein system), which defines a four-state energy cycle. An allosteric energy cycle provides a quantifiable allosteric coupling constant and focuses our attention on the unique properties of the four equilibrated protein complexes that constitute the energy cycle. Because many observed phenomena have been referenced as "allosteric regulation" in the literature, the goal of this work is to use literature examples to explore which systems are and are not consistent with the two-ligand thermodynamic energy cycle-based definition of allosteric regulation. We emphasize the need for consistent language so comparisons can be made among the ever-increasing number of allosteric systems. Building on the mutually exclusive natures of an energy cycle definition of allosteric regulation versus classic two-state models, we conclude our discussion by outlining how the often-proposed Rube-Goldberg-like mechanisms are likely inconsistent with an energy cycle definition of allosteric regulation.


Assuntos
Regulação Alostérica , Sítio Alostérico , Ligantes , Termodinâmica , Humanos , Animais , Biocatálise , Dobramento de Proteína , Proteínas/metabolismo
2.
J Biol Chem ; 299(1): 102801, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528065

RESUMO

Protein phase separation is thought to be a primary driving force for the formation of membrane-less organelles, which control a wide range of biological functions from stress response to ribosome biogenesis. Among phase-separating (PS) proteins, many have intrinsically disordered regions (IDRs) that are needed for phase separation to occur. Accurate identification of IDRs that drive phase separation is important for testing the underlying mechanisms of phase separation, identifying biological processes that rely on phase separation, and designing sequences that modulate phase separation. To identify IDRs that drive phase separation, we first curated datasets of folded, ID, and PS ID sequences. We then used these sequence sets to examine how broadly existing amino acid property scales can be used to distinguish between the three classes of protein regions. We found that there are robust property differences between the classes and, consequently, that numerous combinations of amino acid property scales can be used to make robust predictions of protein phase separation. This result indicates that multiple, redundant mechanisms contribute to the formation of phase-separated droplets from IDRs. The top-performing scales were used to further optimize our previously developed predictor of PS IDRs, ParSe. We then modified ParSe to account for interactions between amino acids and obtained reasonable predictive power for mutations that have been designed to test the role of amino acid interactions in driving protein phase separation. Collectively, our findings provide further insight into the classification of IDRs and the elements involved in protein phase separation.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Domínios Proteicos , Aminoácidos
3.
Small ; 20(26): e2305684, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38247186

RESUMO

Understanding the conformation of proteins in the nanoparticle corona has important implications in how organisms respond to nanoparticle-based drugs. These proteins coat the nanoparticle surface, and their properties will influence the nanoparticle's interaction with cell targets and the immune system. While some coronas are thought to be disordered, two key unanswered questions are the degree of disorder and solvent accessibility. Here, a model is developed for protein corona disorder in polystyrene nanoparticles of varying size. For two different proteins, it is found that binding affinity decreases as nanoparticle size increases. The stoichiometry of binding, along with changes in the hydrodynamic size, supports a highly solvated, disordered protein corona anchored at a small number of attachment sites. The scaling of the stoichiometry versus nanoparticle size is consistent with disordered polymer dimensions. Moreover, it is found that proteins are destabilized less in the presence of larger nanoparticles, and hydrophobic exposure decreases at lower curvatures. The observations hold for proteins on flat polystyrene surfaces, which have the lowest hydrophobic exposure. The model provides an explanation for previous observations of increased amyloid fibrillation rates in the presence of larger nanoparticles, and it may rationalize how cell receptors can recognize protein disorder in therapeutic nanoparticles.


Assuntos
Nanopartículas , Poliestirenos , Ligação Proteica , Coroa de Proteína , Poliestirenos/química , Nanopartículas/química , Coroa de Proteína/química , Solventes/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula
4.
Langmuir ; 40(2): 1213-1222, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38174900

RESUMO

In biological systems, proteins can bind to nanoparticles to form a "corona" of adsorbed molecules. The nanoparticle corona is of significant interest because it impacts an organism's response to a nanomaterial. Understanding the corona requires knowledge of protein structure, orientation, and dynamics at the surface. A residue-level mapping of protein behavior on nanoparticle surfaces is needed, but this mapping is difficult to obtain with traditional approaches. Here, we have investigated the interaction between R2ab and polystyrene nanoparticles (PSNPs) at the level of individual residues. R2ab is a bacterial surface protein from Staphylococcus epidermidis and is known to interact strongly with polystyrene, leading to biofilm formation. We have used mass spectrometry after lysine methylation and hydrogen-deuterium exchange (HDX) NMR spectroscopy to understand how the R2ab protein interacts with PSNPs of different sizes. Lysine methylation experiments reveal subtle but statistically significant changes in methylation patterns in the presence of PSNPs, indicating altered protein surface accessibility. HDX rates become slower overall in the presence of PSNPs. However, some regions of the R2ab protein exhibit faster than average exchange rates in the presence of PSNPs, while others are slower than the average behavior, suggesting conformational changes upon binding. HDX rates and methylation ratios support a recently proposed "adsorbotope" model for PSNPs, wherein adsorbed proteins consist of unfolded anchor points interspersed with partially structured regions. Our data also highlight the challenges of characterizing complex protein-nanoparticle interactions using these techniques, such as fast exchange rates. While providing insights into how R2ab adsorbs onto PSNP surfaces, this research emphasizes the need for advanced methods to comprehend residue-level interactions in the nanoparticle corona.


Assuntos
Nanopartículas , Poliestirenos , Poliestirenos/química , Lisina , Proteínas/química , Nanopartículas/química , Biofilmes
5.
Langmuir ; 39(31): 10806-10819, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37501336

RESUMO

Due to its abundance in blood, a great deal of research has been undertaken to develop efficient biosensors for serum albumin and provide insight into the interactions that take place between these biosensing molecules and the protein. Near-infrared (NIR, >700 nm) organic dyes have been shown to be effective biosensors of serum albumin, but their effectiveness is diminished in whole blood. Herein, it is shown that an NIR sulfonate indolizine-donor-based squaraine dye, SO3SQ, can be strengthened as a biosensor of albumin through the addition of biocompatible ionic liquids (ILs). Specifically, the IL choline glycolate (1:1), at a concentration of 160 mM, results in the enhanced fluorescence emission ("switch-on") of the dye in the presence of blood. The origin of the fluorescence enhancement was investigated via methods, including DLS, ITC, and molecular dynamics. Further, fluorescence measurements were conducted to see the impact the dye-IL system had on the fluorescence of the tryptophan residue of human serum albumin (HSA), as well as to determine its apparent association constants in relation to albumin. Circular dichroism (CD) spectroscopy was used to provide evidence that the dye-IL system does not alter the secondary structures of albumin or DNA. Our results suggest that the enhanced fluorescence of the dye in the presence of IL and blood is due to diversification of binding sites in albumin, controlled by the interaction of the IL-dye-albumin complex.


Assuntos
Líquidos Iônicos , Humanos , Líquidos Iônicos/química , Albumina Sérica/química , Albumina Sérica Humana/química , Sítios de Ligação , Triptofano/química , Espectrometria de Fluorescência/métodos , Dicroísmo Circular
6.
J Biol Chem ; 297(5): 101343, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34710373

RESUMO

The complex cellular milieu can spontaneously demix, or phase separate, in a process controlled in part by intrinsically disordered (ID) proteins. A protein's propensity to phase separate is thought to be driven by a preference for protein-protein over protein-solvent interactions. The hydrodynamic size of monomeric proteins, as quantified by the polymer scaling exponent (v), is driven by a similar balance. We hypothesized that mean v, as predicted by protein sequence, would be smaller for proteins with a strong propensity to phase separate. To test this hypothesis, we analyzed protein databases containing subsets of proteins that are folded, disordered, or disordered and known to spontaneously phase separate. We find that the phase-separating disordered proteins, on average, had lower calculated values of v compared with their non-phase-separating counterparts. Moreover, these proteins had a higher sequence-predicted propensity for ß-turns. Using a simple, surface area-based model, we propose a physical mechanism for this difference: transient ß-turn structures reduce the desolvation penalty of forming a protein-rich phase and increase exposure of atoms involved in π/sp2 valence electron interactions. By this mechanism, ß-turns could act as energetically favored nucleation points, which may explain the increased propensity for turns in ID regions (IDRs) utilized biologically for phase separation. Phase-separating IDRs, non-phase-separating IDRs, and folded regions could be distinguished by combining v and ß-turn propensity. Finally, we propose a new algorithm, ParSe (partition sequence), for predicting phase-separating protein regions, and which is able to accurately identify folded, disordered, and phase-separating protein regions based on the primary sequence.


Assuntos
Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas/química , Polímeros/química , Proteínas Intrinsicamente Desordenadas/genética , Conformação Proteica em Folha beta
7.
Inorg Chem ; 61(3): 1249-1253, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34989562

RESUMO

Human carbonic anhydrase II (HCA) is a robust metalloprotein and an excellent biological model system to study the thermodynamics of metal ion coordination. Apo-HCA binds one zinc ion or two copper ions. We studied these binding processes at five temperatures (15-35 °C) using isothermal titration calorimetry, yielding thermodynamic parameters corrected for pH and buffer effects. We then sought to identify binding-induced structural changes. Our data suggest that binding at the active site organizes 6-8 residues; however, copper binding near the N-terminus results in a net unfolding of 6-7 residues. This surprising destabilization was confirmed using circular dichroism and protein stability measurements. Metal binding induced unfolding may represent an important regulatory mechanism, but it may be easily missed by NMR and X-ray crystallography. Thus, in addition to highlighting a highly novel binding-induced unfolding event, we demonstrate the value of calorimetry for studying the structural implications of metal binding.


Assuntos
Anidrase Carbônica II/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Zinco/farmacologia , Sítios de Ligação/efeitos dos fármacos , Calorimetria , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/química , Complexos de Coordenação/química , Cobre/química , Humanos , Íons/química , Íons/farmacologia , Desdobramento de Proteína , Zinco/química
8.
Anal Chem ; 93(35): 11982-11990, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34432422

RESUMO

An effective intensity-based reference is a cornerstone for quantitative nuclear magnetic resonance (NMR) studies, as the molecular concentration is encoded in its signal. In theory, NMR is well suited for the measurement of competitive protein adsorption onto nanoparticle (NP) surfaces, but current referencing systems are not optimized for multidimensional experiments. Presented herein is a simple and novel referencing system using 15N tryptophan (Trp) as an external reference for 1H-15N 2D NMR experiments. The referencing system is validated by the determination of the binding capacity of a single protein onto gold NPs. Then, the Trp reference is applied to protein mixtures, and signals from each protein are accurately quantified. All results are consistent with previous studies, but with substantially higher precision, indicating that the Trp reference can accurately calibrate the residue peak intensities and reduce systematic errors. Finally, the proposed Trp reference is used to kinetically monitor in situ and in real time the competitive adsorption of different proteins. As a challenging test case, we successfully apply our approach to a mixture of protein variants differing by only a single residue. Our results show that the binding of one protein will affect the binding of the other, leading to an altered NP corona composition. This work therefore highlights the importance of studying protein-NP interactions in protein mixtures in situ, and the referencing system developed here enables the quantification of binding kinetics and thermodynamics of multiple proteins using various 1H-15N 2D NMR techniques.


Assuntos
Nanopartículas , Proteínas , Adsorção , Espectroscopia de Ressonância Magnética , Termodinâmica
9.
Mar Drugs ; 19(3)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800864

RESUMO

Thermosensitive chitosan hydrogels-renewable, biocompatible materials-have many applications as injectable biomaterials for localized drug delivery in the treatment of a variety of diseases. To combat infections such as Staphylococcus aureus osteomyelitis, localized antibiotic delivery would allow for higher doses at the site of infection without the risks associated with traditional antibiotic regimens. Fosfomycin, a small antibiotic in its own class, was loaded into a chitosan hydrogel system with varied beta-glycerol phosphate (ß-GP) and fosfomycin (FOS) concentrations. The purpose of this study was to elucidate the interactions between FOS and chitosan hydrogel. The Kirby Bauer assay revealed an unexpected concentration-dependent inhibition of S. aureus, with reduced efficacy at the high FOS concentration but only at the low ß-GP concentration. No effect of FOS concentration was observed for the planktonic assay. Rheological testing revealed that increasing ß-GP concentration increased the storage modulus while decreasing gelation temperature. NMR showed that FOS was removed from the liquid portion of the hydrogel by reaction over 12 h. SEM and FTIR confirmed gels degraded and released organophosphates over 5 days. This work provides insight into the physicochemical interactions between fosfomycin and chitosan hydrogel systems and informs selection of biomaterial components for improving infection treatment.


Assuntos
Antibacterianos/administração & dosagem , Quitosana/química , Fosfomicina/administração & dosagem , Glicerofosfatos/química , Antibacterianos/química , Antibacterianos/farmacologia , Sistemas de Liberação de Medicamentos , Fosfomicina/química , Fosfomicina/farmacologia , Hidrogéis , Reologia , Staphylococcus aureus/efeitos dos fármacos , Temperatura , Fatores de Tempo
10.
Molecules ; 26(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34641335

RESUMO

Polyethylene glycol (PEG) surface conjugations are widely employed to render passivating properties to nanoparticles in biological applications. The benefits of surface passivation by PEG are reduced protein adsorption, diminished non-specific interactions, and improvement in pharmacokinetics. However, the limitations of PEG passivation remain an active area of research, and recent examples from the literature demonstrate how PEG passivation can fail. Here, we study the adsorption amount of biomolecules to PEGylated gold nanoparticles (AuNPs), focusing on how different protein properties influence binding. The AuNPs are PEGylated with three different sizes of conjugated PEG chains, and we examine interactions with proteins of different sizes, charges, and surface cysteine content. The experiments are carried out in vitro at physiologically relevant timescales to obtain the adsorption amounts and rates of each biomolecule on AuNP-PEGs of varying compositions. Our findings are relevant in understanding how protein size and the surface cysteine content affect binding, and our work reveals that cysteine residues can dramatically increase adsorption rates on PEGylated AuNPs. Moreover, shorter chain PEG molecules passivate the AuNP surface more effectively against all protein types.


Assuntos
Ouro/química , Peptídeos/química , Polietilenoglicóis/química , Proteínas/química , Adsorção , Cisteína/química , Espectroscopia de Ressonância Magnética , Nanopartículas Metálicas , Modelos Moleculares , Tamanho da Partícula , Conformação Proteica , Propriedades de Superfície
11.
J Chem Educ ; 97(3): 820-824, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34045774

RESUMO

A simple one-dimensional 1H NMR experiment that quantifies protein bound to gold nanoparticles has been developed for upper-division biochemistry and physical chemistry students. This laboratory experiment teaches the basics of NMR techniques, which is a highly effective tool in protein studies and supports students to understand the concepts of NMR spectroscopy and nanoparticle-protein interactions. Understanding the interactions of gold nanoparticles (AuNPs) with biological macromolecules is becoming increasingly important as interest in the clinical use of nanoparticles has been on the rise. Applications in drug delivery, biosensing, diagnostics, and enhanced imaging are all tangible possibilities with a better understanding of AuNP-protein interactions. The ability to use AuNPs as biosensors for drug delivery methods in cellular uptake is dependent on the amount of protein that is able to bind to the surface of the nanoparticle. This laboratory experiment solidifies concepts such as quantitative NMR spectroscopy while reinforcing precision laboratory titrations. Students learn how 1H proton NMR spectra can be used to measure free protein in solution and protein bound to AuNPs. A simple formula is used to determine the binding capacity of the nanoparticle. This analysis helps students to understand the impact of nanoparticle-protein interactions, and it allows them to conceptualize macromolecular binding using NMR spectroscopy.

12.
Biochemistry ; 58(6): 788-798, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30507159

RESUMO

Pin1 is an essential peptidyl-prolyl isomerase (PPIase) that catalyzes cis-trans prolyl isomerization in proteins containing pSer/Thr-Pro motifs. It has an N-terminal WW domain that targets these motifs and a C-terminal PPIase domain that catalyzes isomerization. Recently, Pin1 was shown to modify the conformation of phosphorylated histone H1 and stabilize the chromatin-H1 interaction by increasing its residence time. This Pin1-histone H1 interaction plays a key role in pathogen response, in infection, and in cell cycle control; therefore, anti-Pin1 therapeutics are an important focus for treating infections as well as cancer. Each of the H1 histones (H1.0-H1.5) contains several potential Pin1 recognition pSer/pThr-Pro motifs. To understand the Pin1-histone H1 interaction fully, we investigated how both the isolated WW domain and full-length Pin1 interact with three H1 histone substrate peptide sequences that were previously identified as important binding partners (H1.1, H1.4, and H1.5). NMR spectroscopy was used to measure the binding affinities and the interdomain dynamics upon binding to these sequences. We observed different KD values depending on the histone binding site, suggesting that energetics play a role in guiding the Pin1-histone interaction. While interdomain interactions vary between the peptides, we find no evidence for allosteric activation for the histone H1 substrates.


Assuntos
Histonas/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Fragmentos de Peptídeos/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Sítios de Ligação , Histonas/síntese química , Histonas/química , Humanos , Espectroscopia de Ressonância Magnética , Peptidilprolil Isomerase de Interação com NIMA/química , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Ligação Proteica , Domínios Proteicos , Alinhamento de Sequência
13.
Environ Sci Technol ; 53(5): 2635-2646, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30695634

RESUMO

Biochar has been proposed as a soil amendment in agricultural applications due to its advantageous adsorptive properties, high porosity, and low cost. These properties allow biochar to retain soil nutrients, yet the effects of biochar on bacterial growth remain poorly understood. To examine how biochar influences microbial metabolism, Escherichia coli was grown in a complex, well-defined media and treated with either biochar or activated carbon. The concentration of metabolites in the media were then quantified at several time points using NMR spectroscopy. Several metabolites were immediately adsorbed by the char, including l-asparagine, l-glutamine, and l-arginine. However, we find that biochar quantitatively adsorbs less of these metabolic precursors when compared to activated carbon. Electron microscopy reveals differences in surface morphology after cell culture, suggesting that Escherichia coli can form biofilms on the surfaces of the biochar. An examination of significant compounds in the tricarboxylic acid cycle and glycolysis reveals that treatment with biochar is less disruptive than activated carbon throughout metabolism. While both biochar and activated carbon slowed growth compared to untreated media, Escherichia coli in biochar-treated media grew more efficiently, as indicated by a longer logarithmic growth phase and a higher final cell density. This work suggests that biochar can serve as a beneficial soil amendment while minimizing the impact on bacterial viability. In addition, the experiments identify a mechanism for biochar's effectiveness in soil conditioning and reveal how biochar can alter specific bacterial metabolic pathways.


Assuntos
Escherichia coli , Metabolômica , Carvão Vegetal , Solo
14.
Isr J Chem ; 59(11-12): 962-979, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34045771

RESUMO

In the last decade, nanoparticles (NPs) have become a key tool in medicine and biotechnology as drug delivery systems, biosensors and diagnostic devices. The composition and surface chemistry of NPs vary based on the materials used: typically organic polymers, inorganic materials, or lipids. Nanoparticle classes can be further divided into sub-categories depending on the surface modification and functionalization. These surface properties matter when NPs are introduced into a physiological environment, as they will influence how nucleic acids, lipids, and proteins will interact with the NP surface. While small-molecule interactions are easily probed using NMR spectroscopy, studying protein-NP interactions using NMR introduces several challenges. For example, globular proteins may have a perturbed conformation when attached to a foreign surface, and the size of NP-protein conjugates can lead to excessive line broadening. Many of these challenges have been addressed, and NMR spectroscopy is becoming a mature technique for in situ analysis of NP binding behavior. It is therefore not surprising that NMR has been applied to NP systems and has been used to study biomolecules on NP surfaces. Important considerations include corona composition, protein behavior, and ligand architecture. These features are difficult to resolve using classical surface and material characterization strategies, and NMR provides a complementary avenue of characterization. In this review, we examine how solution NMR can be combined with other analytical techniques to investigate protein behavior on NP surfaces.

15.
Biophys J ; 114(7): 1563-1578, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642027

RESUMO

Elastin-like proteins (ELPs) are known to undergo liquid-liquid phase separation reversibly above a concentration-dependent transition temperature. Previous studies suggested that, as temperature increases, ELPs experience an increased propensity for type II ß-turns. However, how the ELPs behave below the phase transition temperature itself is still elusive. Here, we investigate the importance of ß-turn formation during the early stages of ELP self-association. We examined the behavior of two ELPs, a 150-repeat construct that had been investigated previously (ELP[V5G3A2-150] as well as a new 40-repeat construct (ELP40) suitable for nuclear magnetic resonance measurements. Structural analysis of ELP40 reveals a disordered conformation, and chemical shifts throughout the sequence are insensitive to changes in temperature over 20°C. However, a low population of ß-turn conformation cannot be ruled out based on chemical shifts alone. To examine the structural consequences of ß-turns in ELPs, a series of structural ensembles of ELP[V5G3A2-150] were generated, incorporating differing amounts of ß-turn bias throughout the chain. To mimic the early stages of the phase change, two monomers were paired, assuming preferential interaction at ß-turn regions. This approach was justified by the observation that buried hydrophobic turns are commonly observed to interact in the Protein Data Bank. After dimerization, the ensemble-averaged hydrodynamic properties were calculated for each degree of ß-turn bias, and the results were compared with analytical ultracentrifugation experiments at various temperatures. We find that the temperature dependence of the sedimentation coefficient (s20,wo) can be reproduced by increasing the ß-turn content in the structural ensemble. This analysis allows us to estimate the presence of ß-turns and weak associations under experimental conditions. Because disordered proteins frequently exhibit weak biases in secondary structure propensity, these experimentally-driven ensemble calculations may complement existing methods for modeling disordered proteins generally.


Assuntos
Elastina/química , Modelos Moleculares , Sequência de Aminoácidos , Hidrodinâmica , Interações Hidrofóbicas e Hidrofílicas , Método de Monte Carlo , Multimerização Proteica , Estrutura Secundária de Proteína , Solventes/química , Termodinâmica
16.
Inorg Chem ; 54(12): 5671-80, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26010488

RESUMO

Human carbonic anhydrase (CA) is a well-studied, robust, mononuclear Zn-containing metalloprotein that serves as an excellent biological ligand system to study the thermodynamics associated with metal ion coordination chemistry in aqueous solution. The apo form of human carbonic anhydrase II (CA) binds 2 equiv of copper(II) with high affinity. The Cu(2+) ions bind independently forming two noncoupled type II copper centers in CA (CuA and CuB). However, the location and coordination mode of the CuA site in solution is unclear, compared to the CuB site that has been well-characterized. Using paramagnetic NMR techniques and X-ray absorption spectroscopy we identified an N-terminal Cu(2+) binding location and collected information on the coordination mode of the CuA site in CA, which is consistent with a four- to five-coordinate N-terminal Cu(2+) binding site reminiscent to a number of N-terminal copper(II) binding sites including the copper(II)-amino terminal Cu(2+) and Ni(2+) and copper(II)-ß-amyloid complexes. Additionally, we report a more detailed analysis of the thermodynamics associated with copper(II) binding to CA. Although we are still unable to fully deconvolute Cu(2+) binding data to the high-affinity CuA site, we derived pH- and buffer-independent values for the thermodynamics parameters K and ΔH associated with Cu(2+) binding to the CuB site of CA to be 2 × 10(9) and -17.4 kcal/mol, respectively.


Assuntos
Anidrase Carbônica II/química , Anidrase Carbônica II/metabolismo , Cobre/metabolismo , Sítios de Ligação , Calorimetria , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Proteica , Espectrofotometria Ultravioleta , Termodinâmica , Espectroscopia por Absorção de Raios X
17.
ACS Appl Mater Interfaces ; 16(4): 4321-4332, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38236953

RESUMO

Temperature-responsive nanostructures with high antimicrobial efficacy are attractive for therapeutic applications against multidrug-resistant bacteria. Here, we report temperature-responsive nanospheres (TRNs) engineered to undergo self-association and agglomeration above a tunable transition temperature (Tt). The temperature-responsive behavior of the nanoparticles is obtained by functionalizing citrate-capped spherical gold nanoparticles (AuNPs) with elastin-like polypeptides (ELPs). Using protein design principles, we achieve a broad range of attainable Tt values and photothermal conversion efficiencies (η). Two approaches were used to adjust this range: First, by altering the position of the cysteine residue used to attach ELP to the AuNP, we attained a Tt range from 34 to 42 °C. Then, by functionalizing the AuNP with an additional small globular protein, we could extend this range to 34-50 °C. Under near-infrared (NIR) light exposure, all TRNs exhibited reversible agglomeration. Moreover, they showed an enhanced photothermal conversion efficiency in their agglomerated state relative to the dispersed state. Despite their spherical shape, TRNs have a photothermal conversion efficiency approaching that of gold nanorods (η = 68 ± 6%), yet unlike nanorods, the synthesis of TRNs requires no cytotoxic compounds. Finally, we tested TRNs for the photothermal ablation of biofilms. Above Tt, NIR irradiation of TRNs resulted in a 10,000-fold improvement in killing efficiency compared to untreated controls (p < 0.0001). Below Tt, no enhanced antibiofilm effect was observed. In conclusion, engineering the interactions between proteins and nanoparticles enables the tunable control of TRNs, resulting in a novel antibiofilm nanomaterial with low cytotoxicity.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Nanosferas , Ouro/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Antineoplásicos/farmacologia , Biofilmes , Fototerapia/métodos
18.
J Mater Chem C Mater ; 12(12): 4369-4383, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38525159

RESUMO

Fluorescence bioimaging with near-infrared II (NIR-II) emissive organic fluorophores has proven to be a viable noninvasive diagnostic technique. However, there is still the need for the development of fluorophores that possess increased stability as well as functionalities that impart stimuli responsiveness. Through strategic design, we can synthesize fluorophores that possess not only NIR-II optical profiles but also pH-sensitivity and the ability to generate heat upon irradiation. In this work, we employ a donor-acceptor-donor (D-A-D) design to synthesize a series of NIR-II fluorophores. Here we use thienothiadiazole (TTD) as the acceptor, 3-hexylthiophene (HexT) as the π-spacer and vary the alkyl amine donor units: N,N-dimethylaniline (DMA), phenylpiperidine (Pip), and phenylmorpholine (Morp). Spectroscopic analysis shows that all three derivatives exhibit emission in the NIR-II region with λemimax ranging from 1030 to 1075 nm. Upon irradiation, the fluorophores exhibited noticeable heat generation through non-radiative processes. The ability to generate heat indicates that these fluorophores will act as theranostic (combination therapeutic and diagnostic) agents in which simultaneous visualization and treatment can be performed. Additionally, biosensing capabilities were supported by changes in the absorbance properties while under acidic conditions as a result of protonation of the alkyl amine donor units. The fluorophores also show minimal toxicity in a human mammary cell line and with murine red blood cells. Overall, initial results indicate viable NIR-II materials for multiple biomedical applications.

19.
Biomol NMR Assign ; 17(1): 95-99, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37022616

RESUMO

Staphylococcus epidermidis is the leading causative agent for hospital-acquired infections, especially device-related infections, due to its ability to form biofilms. The accumulation-associated protein (Aap) of S. epidermidis is primarily responsible for biofilm formation and consists of two domains, A and B. It was found that the A domain is responsible for the attachment to the abiotic/biotic surface, whereas the B domain is responsible for the accumulation of bacteria during biofilm formation. One of the parts of the A domain is the Aap lectin, which is a carbohydrate-binding domain having 222 amino acids in its structure. Here we report the near complete backbone chemical shift assignments for the lectin domain, as well as its predicted secondary structure. This data will provide a platform for future NMR studies to explore the role of lectin in biofilm formation.


Assuntos
Proteínas de Bactérias , Staphylococcus epidermidis , Proteínas de Bactérias/química , Staphylococcus epidermidis/metabolismo , Lectinas/metabolismo , Ressonância Magnética Nuclear Biomolecular , Biofilmes
20.
Protein Sci ; 32(9): e4756, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37574757

RESUMO

We have developed an algorithm, ParSe, which accurately identifies from the primary sequence those protein regions likely to exhibit physiological phase separation behavior. Originally, ParSe was designed to test the hypothesis that, for flexible proteins, phase separation potential is correlated to hydrodynamic size. While our results were consistent with that idea, we also found that many different descriptors could successfully differentiate between three classes of protein regions: folded, intrinsically disordered, and phase-separating intrinsically disordered. Consequently, numerous combinations of amino acid property scales can be used to make robust predictions of protein phase separation. Built from that finding, ParSe 2.0 uses an optimal set of property scales to predict domain-level organization and compute a sequence-based prediction of phase separation potential. The algorithm is fast enough to scan the whole of the human proteome in minutes on a single computer and is equally or more accurate than other published predictors in identifying proteins and regions within proteins that drive phase separation. Here, we describe a web application for ParSe 2.0 that may be accessed through a browser by visiting https://stevewhitten.github.io/Parse_v2_FASTA to quickly identify phase-separating proteins within large sequence sets, or by visiting https://stevewhitten.github.io/Parse_v2_web to evaluate individual protein sequences.


Assuntos
Transição de Fase , Proteínas , Software , Algoritmos , Proteínas/química , Proteoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA