Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 43(8): 1420-1444, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38528182

RESUMO

Current approaches to the treatment of schizophrenia have mainly focused on the protein-coding part of the genome; in this context, the roles of microRNAs have received less attention. In the present study, we analyze the microRNAome in the blood and postmortem brains of schizophrenia patients, showing that the expression of miR-99b-5p is downregulated in both the prefrontal cortex and blood of patients. Lowering the amount of miR-99b-5p in mice leads to both schizophrenia-like phenotypes and inflammatory processes that are linked to synaptic pruning in microglia. The microglial miR-99b-5p-supressed inflammatory response requires Z-DNA binding protein 1 (Zbp1), which we identify as a novel miR-99b-5p target. Antisense oligonucleotides against Zbp1 ameliorate the pathological effects of miR-99b-5p inhibition. Our findings indicate that a novel miR-99b-5p-Zbp1 pathway in microglia might contribute to the pathogenesis of schizophrenia.


Assuntos
MicroRNAs , Esquizofrenia , Animais , Humanos , Camundongos , Microglia/metabolismo , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Esquizofrenia/genética
2.
Nature ; 603(7899): 138-144, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35197636

RESUMO

Lung infections and smoking are risk factors for multiple sclerosis, a T-cell-mediated autoimmune disease of the central nervous system1. In addition, the lung serves as a niche for the disease-inducing T cells for long-term survival and for maturation into migration-competent effector T cells2. Why the lung tissue in particular has such an important role in an autoimmune disease of the brain is not yet known. Here we detected a tight interconnection between the lung microbiota and the immune reactivity of the brain. A dysregulation in the lung microbiome significantly influenced the susceptibility of rats to developing autoimmune disease of the central nervous system. Shifting the microbiota towards lipopolysaccharide-enriched phyla by local treatment with neomycin induced a type-I-interferon-primed state in brain-resident microglial cells. Their responsiveness towards autoimmune-dominated stimulation by type II interferons was impaired, which led to decreased proinflammatory response, immune cell recruitment and clinical signs. Suppressing lipopolysaccharide-producing lung phyla with polymyxin B led to disease aggravation, whereas addition of lipopolysaccharide-enriched phyla or lipopolysaccharide recapitulated the neomycin effect. Our data demonstrate the existence of a lung-brain axis in which the pulmonary microbiome regulates the immune reactivity of the central nervous tissue and thereby influences its susceptibility to autoimmune disease development.


Assuntos
Autoimunidade , Encéfalo , Microbiota , Esclerose Múltipla , Animais , Doenças Autoimunes , Encéfalo/fisiologia , Lipopolissacarídeos/farmacologia , Pulmão/microbiologia , Esclerose Múltipla/etiologia , Neomicina , Ratos
3.
Nature ; 566(7745): 503-508, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30787438

RESUMO

The grey matter is a central target of pathological processes in neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. The grey matter is often also affected in multiple sclerosis, an autoimmune disease of the central nervous system. The mechanisms that underlie grey matter inflammation and degeneration in multiple sclerosis are not well understood. Here we show that, in Lewis rats, T cells directed against the neuronal protein ß-synuclein specifically invade the grey matter and that this is accompanied by the presentation of multifaceted clinical disease. The expression pattern of ß-synuclein induces the local activation of these T cells and, therefore, determined inflammatory priming of the tissue and targeted recruitment of immune cells. The resulting inflammation led to significant changes in the grey matter, which ranged from gliosis and neuronal destruction to brain atrophy. In humans, ß-synuclein-specific T cells were enriched in patients with chronic-progressive multiple sclerosis. These findings reveal a previously unrecognized role of ß-synuclein in provoking T-cell-mediated pathology of the central nervous system.


Assuntos
Substância Cinzenta/imunologia , Substância Cinzenta/patologia , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Crônica Progressiva/patologia , Linfócitos T/imunologia , beta-Sinucleína/imunologia , Animais , Encéfalo/patologia , Movimento Celular/imunologia , Feminino , Regulação da Expressão Gênica , Gliose/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Ativação Linfocitária , Contagem de Linfócitos , Masculino , Esclerose Múltipla Crônica Progressiva/sangue , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Ratos , Ratos Endogâmicos Lew , Linfócitos T/metabolismo , Linfócitos T/patologia , beta-Sinucleína/análise , beta-Sinucleína/genética , beta-Sinucleína/metabolismo
4.
Nature ; 567(7749): E15, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30867589

RESUMO

In this Article, owing to an error during the production process, the y-axis label of Fig. 2c should read "Number of Tß-syn cells" rather than "Number of T1ß-syn cells" and the left and right panels of Fig. 4 should be labelled 'a' and 'b', respectively. These errors have been corrected online.

5.
Nature ; 530(7590): 349-53, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26863192

RESUMO

In multiple sclerosis, brain-reactive T cells invade the central nervous system (CNS) and induce a self-destructive inflammatory process. T-cell infiltrates are not only found within the parenchyma and the meninges, but also in the cerebrospinal fluid (CSF) that bathes the entire CNS tissue. How the T cells reach the CSF, their functionality, and whether they traffic between the CSF and other CNS compartments remains hypothetical. Here we show that effector T cells enter the CSF from the leptomeninges during Lewis rat experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. While moving through the three-dimensional leptomeningeal network of collagen fibres in a random Brownian walk, T cells were flushed from the surface by the flow of the CSF. The detached cells displayed significantly lower activation levels compared to T cells from the leptomeninges and CNS parenchyma. However, they did not represent a specialized non-pathogenic cellular sub-fraction, as their gene expression profile strongly resembled that of tissue-derived T cells and they fully retained their encephalitogenic potential. T-cell detachment from the leptomeninges was counteracted by integrins VLA-4 and LFA-1 binding to their respective ligands produced by resident macrophages. Chemokine signalling via CCR5/CXCR3 and antigenic stimulation of T cells in contact with the leptomeningeal macrophages enforced their adhesiveness. T cells floating in the CSF were able to reattach to the leptomeninges through steps reminiscent of vascular adhesion in CNS blood vessels, and invade the parenchyma. The molecular/cellular conditions for T-cell reattachment were the same as the requirements for detachment from the leptomeningeal milieu. Our data indicate that the leptomeninges represent a checkpoint at which activated T cells are licensed to enter the CNS parenchyma and non-activated T cells are preferentially released into the CSF, from where they can reach areas of antigen availability and tissue damage.


Assuntos
Movimento Celular , Líquido Cefalorraquidiano/citologia , Encefalomielite Autoimune Experimental/patologia , Meninges/patologia , Esclerose Múltipla/patologia , Linfócitos T/patologia , Transferência Adotiva , Animais , Adesão Celular , Líquido Cefalorraquidiano/imunologia , Quimiocinas/metabolismo , Plexo Corióideo , Colágeno/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , Feminino , Integrina alfa4beta1/metabolismo , Ativação Linfocitária , Antígeno-1 Associado à Função Linfocitária/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Meninges/imunologia , Esclerose Múltipla/imunologia , Ratos , Ratos Endogâmicos Lew , Receptores CCR5/metabolismo , Receptores CXCR3/metabolismo , Linfócitos T/imunologia
6.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445189

RESUMO

Tamoxifen is frequently used in murine knockout systems with CreER/LoxP. Besides possible neuroprotective effects, tamoxifen is described as having a negative impact on adult neurogenesis. The present study investigated the effect of a high-dose tamoxifen application on Theiler's murine encephalomyelitis virus (TMEV)-induced hippocampal damage. Two weeks after TMEV infection, 42% of the untreated TMEV-infected mice were affected by marked inflammation with neuronal loss, whereas 58% exhibited minor inflammation without neuronal loss. Irrespective of the presence of neuronal loss, untreated mice lacked TMEV antigen expression within the hippocampus at 14 days post-infection (dpi). Interestingly, tamoxifen application 0, 2 and 4, or 5, 7 and 9 dpi decelerated virus elimination and markedly increased neuronal loss to 94%, associated with increased reactive astrogliosis at 14 dpi. T cell infiltration, microgliosis and expression of water channels were similar within the inflammatory lesions, regardless of tamoxifen application. Applied at 0, 2 and 4 dpi, tamoxifen had a negative impact on the number of doublecortin (DCX)-positive cells within the dentate gyrus (DG) at 14 dpi, without a long-lasting effect on neuronal loss at 147 dpi. Thus, tamoxifen application during a TMEV infection is associated with transiently increased neuronal loss in the hippocampus, increased reactive astrogliosis and decreased neurogenesis in the DG.


Assuntos
Antagonistas de Estrogênios/efeitos adversos , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Tamoxifeno/efeitos adversos , Animais , Infecções por Cardiovirus/complicações , Infecções por Cardiovirus/patologia , Infecções por Cardiovirus/veterinária , Morte Celular/efeitos dos fármacos , Proteína Duplacortina , Hipocampo/patologia , Camundongos Endogâmicos C57BL , Neurônios/patologia , Theilovirus/fisiologia
7.
Proc Natl Acad Sci U S A ; 113(12): 3323-8, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26957602

RESUMO

Multiple sclerosis (MS) is caused by T cells that are reactive for brain antigens. In experimental autoimmune encephalomyelitis, the animal model for MS, myelin-reactive T cells initiate the autoimmune process when entering the nervous tissue and become reactivated upon local encounter of their cognate CNS antigen. Thereby, the strength of the T-cellular reactivation process within the CNS tissue is crucial for the manifestation and the severity of the clinical disease. Recently, B cells were found to participate in the pathogenesis of CNS autoimmunity, with several diverse underlying mechanisms being under discussion. We here report that B cells play an important role in promoting the initiation process of CNS autoimmunity. Myelin-specific antibodies produced by autoreactive B cells after activation in the periphery diffused into the CNS together with the first invading pathogenic T cells. The antibodies accumulated in resident antigen-presenting phagocytes and significantly enhanced the activation of the incoming effector T cells. The ensuing strong blood-brain barrier disruption and immune cell recruitment resulted in rapid manifestation of clinical disease. Therefore, myelin oligodendrocyte glycoprotein (MOG)-specific autoantibodies can initiate disease bouts by cooperating with the autoreactive T cells in helping them to recognize their autoantigen and become efficiently reactivated within the immune-deprived nervous tissue.


Assuntos
Autoanticorpos/imunologia , Doenças Autoimunes/imunologia , Doenças do Sistema Nervoso Central/imunologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Diferenciação Celular , Humanos , Linfócitos T/patologia
8.
J Neuroinflammation ; 15(1): 217, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068351

RESUMO

BACKGROUND: Autoimmune polyneuropathies are acquired inflammatory disorders of the peripheral nervous system (PNS) characterized by inflammation, demyelination, and axonal degeneration. Although the pathogenesis has not been fully elucidated, T cells recognizing self-antigens are believed to initiate inflammation in a subgroup of patients. However, the route and time of T cell entry into the PNS have not yet been described in detail. In this study, we analyzed both kinetics as well as localization of retrovirally transfected green fluorescent protein (GFP)-expressing neuritogenic T lymphocytes in experimental autoimmune neuritis (EAN). METHODS: T lymphocytes obtained from rats following EAN induction by immunization with peripheral nerve protein peptide P255-78 were retrovirally engineered to express GFP. Non-specific T cells were negatively selected by in vitro restimulation, whereas GFP-expressing neuritogenic T cells (reactive to P255-78) were adoptively transferred into healthy rats (AT-EAN). Antigen-specific T cell tracking and localization was performed by flow cytometry and immunohistochemistry during the course of disease. RESULTS: After induction of autoimmune neuritis, P2-reactive T cells were detectable in the liver, spleen, lymph nodes, lung, peripheral blood, and the sciatic nerves with distinct kinetics. A significant number of GFP+ T cells appeared early in the lung with a peak at day four. In the peripheral nerves within the first days, GFP-negative T cells rapidly accumulated and exceeded the number of GFP-expressing cells, but did not enter the endoneurium. Very early after adoptive transfer, T cells are found in proximity to peripheral nerves and in the epineurium. However, only GFP-expressing neuritogenic T cells are able to enter the endoneurium from day five after transfer. CONCLUSIONS: Our findings suggest that neuritogenic T cells invade the PNS early in the course of disease. However, neuritogenic T cells cross the blood-nerve barrier with a certain delay without preference to dorsal roots. Further understanding of the pathophysiological role of autoagressive T cells may help to improve therapeutic strategies in immune-mediated neuropathies.


Assuntos
Neurite Autoimune Experimental/imunologia , Neurite Autoimune Experimental/patologia , Nervos Periféricos/patologia , Linfócitos T/fisiologia , Transferência Adotiva , Animais , Antígenos CD4/metabolismo , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Adjuvante de Freund/toxicidade , Regulação da Expressão Gênica/imunologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteína P2 de Mielina/metabolismo , Neurite Autoimune Experimental/induzido quimicamente , Neurite Autoimune Experimental/cirurgia , Fragmentos de Peptídeos/metabolismo , Ratos , Ratos Endogâmicos Lew , Linfócitos T/metabolismo , Fatores de Tempo , Transdução Genética
9.
Nature ; 488(7413): 675-9, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22914092

RESUMO

The blood­brain barrier (BBB) and the environment of the central nervous system (CNS) guard the nervous tissue from peripheral immune cells. In the autoimmune disease multiple sclerosis, myelin-reactive T-cell blasts are thought to transgress the BBB and create a pro-inflammatory environment in the CNS, thereby making possible a second autoimmune attack that starts from the leptomeningeal vessels and progresses into the parenchyma. Using a Lewis rat model of experimental autoimmune encephalomyelitis, we show here that contrary to the expectations of this concept, T-cell blasts do not efficiently enter the CNS and are not required to prepare the BBB for immune-cell recruitment. Instead, intravenously transferred T-cell blasts gain the capacity to enter the CNS after residing transiently within the lung tissues. Inside the lung tissues, they move along and within the airways to bronchus-associated lymphoid tissues and lung-draining mediastinal lymph nodes before they enter the blood circulation from where they reach the CNS. Effector T cells transferred directly into the airways showed a similar migratory pattern and retained their full pathogenicity. On their way the T cells fundamentally reprogrammed their gene-expression profile, characterized by downregulation of their activation program and upregulation of cellular locomotion molecules together with chemokine and adhesion receptors. The adhesion receptors include ninjurin 1, which participates in T-cell intravascular crawling on cerebral blood vessels. We detected that the lung constitutes a niche not only for activated T cells but also for resting myelin-reactive memory T cells. After local stimulation in the lung, these cells strongly proliferate and, after assuming migratory properties, enter the CNS and induce paralytic disease. The lung could therefore contribute to the activation of potentially autoaggressive T cells and their transition to a migratory mode as a prerequisite to entering their target tissues and inducing autoimmune disease.


Assuntos
Encéfalo/patologia , Movimento Celular , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Pulmão/patologia , Linfócitos T/patologia , Transferência Adotiva , Animais , Autoimunidade/imunologia , Barreira Hematoencefálica/imunologia , Encéfalo/citologia , Encéfalo/imunologia , Moléculas de Adesão Celular Neuronais/metabolismo , Circulação Cerebrovascular , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Memória Imunológica , Pulmão/citologia , Pulmão/imunologia , Ativação Linfocitária , Bainha de Mielina/imunologia , Fatores de Crescimento Neural/metabolismo , Ratos , Ratos Endogâmicos Lew , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
10.
Mol Cell Neurosci ; 85: 105-118, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28889992

RESUMO

Based on our previous demonstration of CXCR7 as the major mediator of CXCL12 signaling in cultured astrocytes, we have now compared astrocytic expression of the CXCL12 receptors, CXCR7 and CXCR4, during CNS development and disease. In addition, we asked whether disease-associated conditions/factors affect expression of CXCL12 receptors in astrocytes. In the late embryonic rat brain, CXCR7+/GFAP+ cells were restricted to the ventricular/subventricular zone while CXCR4 was widely absent from GFAP-positive cells. In the early postnatal and adult brain, CXCR7 and CXCR4 were almost exclusively expressed by GFAP-immunoreactive astrocytes forming the superficial glia limitans. Contrasting the situation in the intact CNS, a striking increase in astrocytic CXCR7 expression was detectable in the cortex of rats with experimental brain infarcts, in the spinal cord of rats with experimental autoimmune encephalomyelitis (EAE) and after mechanical compression, as well as in the in infarcted human cerebral cortex and in the hippocampus of Alzheimer's disease patients. None of these pathologies was associated with substantial increases in astrocytic CXCR4 expression. Screening of various disease-associated factors/conditions further revealed that CXCR7 expression of cultured cortical astrocytes increases with IFNγ as well as under hypoxic conditions whereas CXCR7 expression is attenuated following treatment with IFNß. Again, none of the treatments affected CXCR4 expression in cultured astrocytes. Together, these findings support the hypothesis of a crucial role of astrocytic CXCR7 in the progression of various CNS pathologies.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Receptores CXCR4/biossíntese , Receptores CXCR/biossíntese , Idoso , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Humanos , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley
11.
Neurobiol Dis ; 102: 60-69, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28235673

RESUMO

Laquinimod is currently being tested as a therapeutic drug in multiple sclerosis. However, its exact mechanism of action is still under investigation. Tracking of fluorescently-tagged encephalitogenic T cells during experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, revealed that laquinimod significantly reduces the invasion of pathogenic effector T cells into the CNS tissue. T-cell activation, differentiation and amplification within secondary lymphoid organs after immunization with myelin antigen, their migratory capacity and re-activation within the nervous tissue were either only mildly affected or remained unchanged. Instead, laquinimod directly impacted the functionality of the CNS vasculature. The expression of tight junction proteins p120 and ZO-1 in human brain endothelial cells was up-regulated upon laquinimod treatment, resulting in a significant increase in the transendothelial electrical resistance of confluent monolayers of brain endothelial cells. Similarly, expression of the adhesion molecule activated leukocyte cell adhesion molecule (ALCAM) and inflammatory chemokines CCL2 and IP-10 was suppressed, leading to a significant reduction in the migration of memory TH1 and TH17 lymphocytes across the blood brain barrier (BBB). Our data indicate that laquinimod exerts its therapeutic effects by tightening the BBB and limiting parenchymal invasion of effector T cells, thereby reducing CNS damage.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Fármacos Neuroprotetores/farmacologia , Quinolonas/farmacologia , Adulto , Animais , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/fisiologia , Células Cultivadas , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/metabolismo , Ratos Endogâmicos Lew , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Adulto Jovem
12.
Immunity ; 29(4): 602-14, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18835197

RESUMO

Effector memory T (Tem) cells are essential mediators of autoimmune disease and delayed-type hypersensitivity (DTH), a convenient model for two-photon imaging of Tem cell participation in an inflammatory response. Shortly (3 hr) after entry into antigen-primed ear tissue, Tem cells stably attached to antigen-bearing antigen-presenting cells (APCs). After 24 hr, enlarged Tem cells were highly motile along collagen fibers and continued to migrate rapidly for 18 hr. Tem cells rely on voltage-gated Kv1.3 potassium channels to regulate calcium signaling. ShK-186, a specific Kv1.3 blocker, inhibited DTH and suppressed Tem cell enlargement and motility in inflamed tissue but had no effect on homing to or motility in lymph nodes of naive and central memory T (Tcm) cells. ShK-186 effectively treated disease in a rat model of multiple sclerosis. These results demonstrate a requirement for Kv1.3 channels in Tem cells during an inflammatory immune response in peripheral tissues. Targeting Kv1.3 allows for effector memory responses to be suppressed while central memory responses remain intact.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Hipersensibilidade Tardia/imunologia , Memória Imunológica , Canal de Potássio Kv1.3/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Linfócitos T/imunologia , Animais , Células Apresentadoras de Antígenos/metabolismo , Movimento Celular/efeitos dos fármacos , Infecções por Chlamydia/tratamento farmacológico , Infecções por Chlamydia/imunologia , Chlamydia trachomatis/imunologia , Colágeno , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Feminino , Hipersensibilidade Tardia/metabolismo , Memória Imunológica/efeitos dos fármacos , Canal de Potássio Kv1.3/metabolismo , Linfonodos/citologia , Linfonodos/imunologia , Ativação Linfocitária/efeitos dos fármacos , Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/imunologia , Ovalbumina/imunologia , Bloqueadores dos Canais de Potássio/administração & dosagem , Bloqueadores dos Canais de Potássio/uso terapêutico , Proteínas/farmacologia , Ratos , Ratos Endogâmicos Lew , Receptores CCR7/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
13.
Eur J Immunol ; 45(5): 1326-38, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25627579

RESUMO

Brain-derived neurotrophic factor (BDNF) promotes neuronal survival, regeneration, and plasticity. Emerging evidence also indicates an essential role for BDNF outside the nervous system, for instance in immune cells. We therefore investigated the impact of BDNF on T cells using BDNF knockout (KO) mice and conditional KO mice lacking BDNF specifically in this lymphoid subset. In both settings, we observed diminished T-cell cellularity in peripheral lymphoid organs and an increase in CD4(+) CD44(+) memory T cells. Analysis of thymocyte development revealed diminished total thymocyte numbers, accompanied by a significant increase in CD4/CD8 double-negative (DN) thymocytes due to a partial block in the transition from the DN3 to the DN4 stage. This was neither due to increased thymocyte apoptosis nor defects in the expression of the TCR-ß chain or the pre-TCR. In contrast, pERK but not pAKT levels were diminished in DN3 BDNF-deficient thymocytes. BDNF deficiency in T cells did not result in gross deficits in peripheral acute immune responses nor in changes of the homeostatic proliferation of peripheral T cells. Taken together, our data reveal a critical autocrine and/or paracrine role of T-cell-derived BDNF in thymocyte maturation involving ERK-mediated TCR signaling pathways.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/deficiência , Fator Neurotrófico Derivado do Encéfalo/genética , Diferenciação Celular , Feminino , Memória Imunológica , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Linfopoese , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/imunologia
14.
Acta Neuropathol ; 132(3): 317-38, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27522506

RESUMO

Immune privilege of the central nervous system (CNS) has been ascribed to the presence of a blood-brain barrier and the lack of lymphatic vessels within the CNS parenchyma. However, immune reactions occur within the CNS and it is clear that the CNS has a unique relationship with the immune system. Recent developments in high-resolution imaging techniques have prompted a reassessment of the relationships between the CNS and the immune system. This review will take these developments into account in describing our present understanding of the anatomical connections of the CNS fluid drainage pathways towards regional lymph nodes and our current concept of immune cell trafficking into the CNS during immunosurveillance and neuroinflammation. Cerebrospinal fluid (CSF) and interstitial fluid are the two major components that drain from the CNS to regional lymph nodes. CSF drains via lymphatic vessels and appears to carry antigen-presenting cells. Interstitial fluid from the CNS parenchyma, on the other hand, drains to lymph nodes via narrow and restricted basement membrane pathways within the walls of cerebral capillaries and arteries that do not allow traffic of antigen-presenting cells. Lymphocytes targeting the CNS enter by a two-step process entailing receptor-mediated crossing of vascular endothelium and enzyme-mediated penetration of the glia limitans that covers the CNS. The contribution of the pathways into and out of the CNS as initiators or contributors to neurological disorders, such as multiple sclerosis and Alzheimer's disease, will be discussed. Furthermore, we propose a clear nomenclature allowing improved precision when describing the CNS-specific communication pathways with the immune system.


Assuntos
Doença de Alzheimer/patologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Linfonodos/patologia , Doenças do Sistema Nervoso/patologia , Neuroglia/citologia , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/imunologia , Animais , Líquido Extracelular/metabolismo , Humanos , Linfonodos/imunologia , Doenças do Sistema Nervoso/metabolismo
15.
Nature ; 462(7269): 94-8, 2009 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-19829296

RESUMO

The tissues of the central nervous system are effectively shielded from the blood circulation by specialized vessels that are impermeable not only to cells, but also to most macromolecules circulating in the blood. Despite this seemingly absolute seclusion, central nervous system tissues are subject to immune surveillance and are vulnerable to autoimmune attacks. Using intravital two-photon imaging in a Lewis rat model of experimental autoimmune encephalomyelitis, here we present in real-time the interactive processes between effector T cells and cerebral structures from their first arrival to manifest autoimmune disease. We observed that incoming effector T cells successively scanned three planes. The T cells got arrested to leptomeningeal vessels and immediately monitored the luminal surface, crawling preferentially against the blood flow. After diapedesis, the cells continued their scan on the abluminal vascular surface and the underlying leptomeningeal (pial) membrane. There, the T cells encountered phagocytes that effectively present antigens, foreign as well as myelin proteins. These contacts stimulated the effector T cells to produce pro-inflammatory mediators, and provided a trigger to tissue invasion and the formation of inflammatory infiltrations.


Assuntos
Doenças do Sistema Nervoso Central/imunologia , Doenças do Sistema Nervoso Central/patologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Meninges/irrigação sanguínea , Meninges/imunologia , Linfócitos T/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos/imunologia , Movimento Celular , Células Cultivadas , Meninges/patologia , Camundongos , Ovalbumina/imunologia , Fagócitos/imunologia , Ratos , Ratos Endogâmicos Lew
16.
Acta Neuropathol ; 127(5): 713-29, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24488308

RESUMO

Glucocorticoids (GCs) are the standard therapy for treating multiple sclerosis (MS) patients suffering from an acute relapse. One of the main mechanisms of GC action is held to be the induction of T cell apoptosis leading to reduced lymphocyte infiltration into the CNS, yet our analysis of experimental autoimmune encephalomyelitis (EAE) in three different strains of genetically manipulated mice has revealed that the induction of T cell apoptosis is not essential for the therapeutic efficacy of GCs. Instead, we identified the redirection of T cell migration in response to chemokines as a new therapeutic principle of GC action. GCs inhibited the migration of T cells towards CCL19 while they enhanced their responsiveness towards CXCL12. Importantly, blocking CXCR4 signaling in vivo by applying Plerixafor(®) strongly impaired the capacity of GCs to interfere with EAE, as revealed by an aggravated disease course, more pronounced CNS infiltration and a more dispersed distribution of the infiltrating T cells throughout the parenchyma. Our observation that T cells lacking the GC receptor were refractory to CXCL12 further underscores the importance of this pathway for the treatment of EAE by GCs. Importantly, methylprednisolone pulse therapy strongly increased the capacity of peripheral blood T cells from MS patients of different subtypes to migrate towards CXCL12. This indicates that modulation of T cell migration is an important mechanistic principle responsible for the efficacy of high-dose GC therapy not only of EAE but also of MS.


Assuntos
Quimiocinas/metabolismo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Glucocorticoides/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Linfócitos T/efeitos dos fármacos , Adulto , Idoso , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/fisiopatologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Esclerose Múltipla/fisiopatologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Linfócitos T/fisiologia
17.
Front Immunol ; 14: 1105432, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090733

RESUMO

The intracerebral infection of mice with Theiler's murine encephalomyelitis virus (TMEV) represents a well-established animal model for multiple sclerosis (MS). Because CD28 is the main co-stimulatory molecule for the activation of T cells, we wanted to investigate its impact on the course of the virus infection as well as on a potential development of autoimmunity as seen in susceptible mouse strains for TMEV. In the present study, 5 weeks old mice on a C57BL/6 background with conventional or tamoxifen-induced, conditional CD28-knockout were infected intracerebrally with TMEV-BeAn. In the acute phase at 14 days post TMEV-infection (dpi), both CD28-knockout strains showed virus spread within the central nervous system (CNS) as an uncommon finding in C57BL/6 mice, accompanied by histopathological changes such as reduced microglial activation. In addition, the conditional, tamoxifen-induced CD28-knockout was associated with acute clinical deterioration and weight loss, which limited the observation period for this mouse strain to 14 dpi. In the chronic phase (42 and 147 dpi) of TMEV-infection, surprisingly only 33% of conventional CD28-knockout mice showed chronic TMEV-infection with loss of motor function concomitant with increased spinal cord inflammation, characterized by T- and B cell infiltration, microglial activation and astrogliosis at 33-42 dpi. Therefore, the clinical outcome largely depends on the time point of the CD28-knockout during development of the immune system. Whereas a fatal clinical outcome can already be observed in the early phase during TMEV-infection for conditional, tamoxifen-induced CD28-knockout mice, only one third of conventional CD28-knockout mice develop clinical symptoms later, accompanied by ongoing inflammation and an inability to clear the virus. However, the development of autoimmunity could not be observed in this C57BL/6 TMEV model irrespective of the time point of CD28 deletion.


Assuntos
Esclerose Múltipla , Camundongos , Animais , Antígenos CD28/genética , Modelos Animais de Doenças , Camundongos Knockout , Camundongos Endogâmicos C57BL
18.
Front Immunol ; 14: 1194842, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37292191

RESUMO

Theiler's murine encephalomyelitis virus (TMEV) is the causative agent of TMEV-induced demyelinating disease (TMEV-IDD); a well-established animal model for the chronic progressive form of human multiple sclerosis (MS). In susceptible mice with an inadequate immune response, TMEV-IDD is triggered by virus persistence and maintained by a T cell mediated immunopathology. OT-mice are bred on a TMEV-resistant C57BL/6 background and own predominantly chicken ovalbumin (OVA)-specific populations of CD8+ T cells (OT-I) or CD4+ T cells (OT-II), respectively. It is hypothesized that the lack of antigen specific T cell populations increases susceptibility for a TMEV-infection in OT-mice on a TMEV-resistant C57BL/6 background. OT-I, OT-II, and C57BL/6 control mice were infected intracerebrally with the TMEV-BeAn strain. Mice were scored weekly for clinical disease and after necropsy, histological and immunohistochemical evaluation was performed. OT-I mice started to develop progressive motor dysfunction between 7 and 21 days post infection (dpi), leading up to hind limb paresis and critical weight loss, which resulted in euthanasia for humane reasons between 14 and 35 dpi. OT-I mice displayed a high cerebral virus load, an almost complete absence of CD8+ T cells from the central nervous system (CNS) and a significantly diminished CD4+ T cell response. Contrarily, only 60% (12 of 20) of infected OT-II mice developed clinical disease characterized by mild ataxia. 25% of clinically affected OT-II mice (3 of 12) made a full recovery. 5 of 12 OT-II mice with clinical disease developed severe motor dysfunction similar to OT-I mice and were euthanized for humane reasons between 13 and 37 dpi. OT-II mice displayed only low virus-immunoreactivity, but clinical disease correlated well with severely reduced infiltration of CD8+ T cells and the increased presence of CD4+ T cells in the brains of OT-II mice. Though further studies are needed to reveal the underlying pathomechanisms following TMEV infection in OT mice, findings indicate an immunopathological process as a main contributor to clinical disease in OT-II mice, while a direct virus-associated pathology may be the main contributor to clinical disease in TMEV-infected OT-I mice.


Assuntos
Doenças Desmielinizantes , Theilovirus , Humanos , Camundongos , Animais , Linfócitos T CD8-Positivos , Ovalbumina , Doenças Desmielinizantes/patologia , Camundongos Endogâmicos C57BL , Linfócitos T CD4-Positivos
19.
Biochim Biophys Acta Mol Cell Res ; 1870(6): 119485, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37150482

RESUMO

Ca2+ signaling is one of the essential signaling systems for T lymphocyte activation, the latter being an essential step in the pathogenesis of autoimmune diseases such as multiple sclerosis (MS). Store-operated Ca2+ entry (SOCE) ensures long lasting Ca2+ signaling and is of utmost importance for major downstream T lymphocyte activation steps, e.g. nuclear localization of the transcription factor 'nuclear factor of activated T cells' (NFAT). 2-Methoxyestradiol (2ME2), an endogenous metabolite of estradiol (E2), blocks nuclear translocation of NFAT. The likely underlying mechanism is inhibition of SOCE, as shown for its synthetic sulfamate ester analogue 2-ethyl-3-sulfamoyloxy-17ß-cyanomethylestra-1,3,5(10)-triene (STX564). Here, we demonstrate that another synthetic bis-sulfamoylated 2ME2 derivative, 2-methoxyestradiol-3,17-O,O-bis-sulfamate (2-MeOE2bisMATE, STX140), an orally bioavailable, multi-targeting anticancer agent and potent steroid sulfatase (STS) inhibitor, antagonized SOCE in T lymphocytes. Downstream events, e.g. secretion of the pro-inflammatory cytokines interferon-γ and interleukin-17, were decreased by STX140 in in vitro experiments. Remarkably, STX140 dosed in vivo completely blocked the clinical disease in both active and transfer experimental autoimmune encephalomyelitis (EAE) in Lewis rats, a T cell-mediated animal model for MS, at a dose of 10 mg/kg/day i.p., whereas neither 2ME2 nor Irosustat, a pure STS inhibitor, showed any effect. The STS inhibitory activity of STX140 is therefore not responsible for its activity in this model. Taken together, inhibition of SOCE by STX140 resulting in full antagonism of clinical symptoms in EAE in the Lewis rat, paired with the known excellent bioavailability and pharmaceutical profile of this drug, open potentially new therapeutic avenues for the treatment of MS.


Assuntos
Encefalomielite Autoimune Experimental , Linfócitos T , Ratos , Animais , 2-Metoxiestradiol , Encefalomielite Autoimune Experimental/tratamento farmacológico , Ratos Endogâmicos Lew , Preparações Farmacêuticas
20.
Sci Signal ; 16(790): eabn9405, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339181

RESUMO

During an immune response, T cells migrate from blood vessel walls into inflamed tissues by migrating across the endothelium and through extracellular matrix (ECM). Integrins facilitate T cell binding to endothelial cells and ECM proteins. Here, we report that Ca2+ microdomains observed in the absence of T cell receptor (TCR)/CD3 stimulation are initial signaling events triggered by adhesion to ECM proteins that increase the sensitivity of primary murine T cells to activation. Adhesion to the ECM proteins collagen IV and laminin-1 increased the number of Ca2+ microdomains in a manner dependent on the kinase FAK, phospholipase C (PLC), and all three inositol 1,4,5-trisphosphate receptor (IP3R) subtypes and promoted the nuclear translocation of the transcription factor NFAT-1. Mathematical modeling predicted that the formation of adhesion-dependent Ca2+ microdomains required the concerted activity of two to six IP3Rs and ORAI1 channels to achieve the increase in the Ca2+ concentration in the ER-plasma membrane junction that was observed experimentally and that required SOCE. Further, adhesion-dependent Ca2+ microdomains were important for the magnitude of the TCR-induced activation of T cells on collagen IV as assessed by the global Ca2+ response and NFAT-1 nuclear translocation. Thus, adhesion to collagen IV and laminin-1 sensitizes T cells through a mechanism involving the formation of Ca2+ microdomains, and blocking this low-level sensitization decreases T cell activation upon TCR engagement.


Assuntos
Células Endoteliais , Proteínas da Matriz Extracelular , Camundongos , Animais , Proteínas da Matriz Extracelular/metabolismo , Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Colágeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA