Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Immunity ; 50(6): 1467-1481.e6, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31201093

RESUMO

Tissue-resident macrophages are receptive to specific signals concentrated in cellular niches that direct their cell differentiation and maintenance genetic programs. Here, we found that deficiency of the cytokine RANKL in lymphoid tissue organizers and marginal reticular stromal cells of lymph nodes resulted in the loss of the CD169+ sinusoidal macrophages (SMs) comprising the subcapsular and the medullary subtypes. Subcapsular SM differentiation was impaired in mice with targeted RANK deficiency in SMs. Temporally controlled RANK removal in lymphatic endothelial cells (LECs) revealed that lymphatic RANK activation during embryogenesis and shortly after birth was required for the differentiation of both SM subtypes. Moreover, RANK expression by LECs was necessary for SM restoration after inflammation-induced cell loss. Thus, cooperation between mesenchymal cells and LECs shapes a niche environment that supports SM differentiation and reconstitution after inflammation.


Assuntos
Citocinas/metabolismo , Linfonodos/citologia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Células Estromais/metabolismo , Animais , Biomarcadores , Diferenciação Celular , Microambiente Celular , Imunofenotipagem , Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , Transdução de Sinais
2.
EMBO Rep ; 24(4): e55971, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36856136

RESUMO

Pseudomonas aeruginosa is a Gram-negative bacterium causing morbidity and mortality in immuno-compromised humans. It produces a lectin, LecB, that is considered a major virulence factor, however, its impact on the immune system remains incompletely understood. Here we show that LecB binds to endothelial cells in human skin and mice and disrupts the transendothelial passage of leukocytes in vitro. It impairs the migration of dendritic cells into the paracortex of lymph nodes leading to a reduced antigen-specific T cell response. Under the effect of the lectin, endothelial cells undergo profound cellular changes resulting in endocytosis and degradation of the junctional protein VE-cadherin, formation of an actin rim, and arrested cell motility. This likely negatively impacts the capacity of endothelial cells to respond to extracellular stimuli and to generate the intercellular gaps for allowing leukocyte diapedesis. A LecB inhibitor can restore dendritic cell migration and T cell activation, underlining the importance of LecB antagonism to reactivate the immune response against P. aeruginosa infection.


Assuntos
Pseudomonas aeruginosa , Migração Transendotelial e Transepitelial , Humanos , Animais , Camundongos , Células Endoteliais/metabolismo , Lectinas/metabolismo , Lectinas/farmacologia , Imunidade
3.
Allergy ; 76(7): 2044-2056, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33368331

RESUMO

BACKGROUND: Immune modulation by vitamin D3 through dendritic cells (DCs) remains controversial. Human DCs exposed in vitro counteract type-1 T-helper (Th1) differentiation and induce regulatory T cells. However, cutaneous application on mice promotes Th2-driven inflammation resembling atopic dermatitis and relying on thymic stromal lymphopoietin (TSLP) from keratinocytes and T-cell orientation by TSLP-stimulated skin DCs. We studied the effects of vitamin D3 in human skin, focusing on TSLP production and the role of skin DCs in T-cell differentiation. METHODS: Human healthy skin explants were exposed in vitro to vitamin D3 analogs. Migrating DCs were analyzed and TSLP quantified in the supernatant. Allogeneic naïve CD4+ T cells were cocultured with DCs to assess their proliferation and cytokine production. RESULTS: Vitamin D3 induced skin DCs to differentiate Th2 cells producing IL-4 and IL-13. Vitamin D3 triggered TSLP release in ~30% of skin explants, correlating with IL-13 detection in Th2 cells. In these donors, blocking TSLP receptor during skin explant cultures abrogated IL-13 production, yet IL-4+ Th2 cells were unaffected. Among skin DCs emerged CD14+ cells that had responded directly to vitamin D3 and differed from classical CD14+ dermal emigrants. Vitamin D3-elicited CD14+ DCs sufficed to promote IL-4+ Th2 cells in a TSLP-independent manner. CONCLUSION: Vitamin D3, despite inducing TSLP in some donors, had a direct influence on skin DCs, affecting their phenotype and ability to drive Th2 responses independently of TSLP. Our findings pave the way toward in vitro systems that accurately model human cutaneous Th2 responses, notably involved in atopic dermatitis.


Assuntos
Colecalciferol , Células de Langerhans , Animais , Colecalciferol/farmacologia , Citocinas , Células Dendríticas , Humanos , Camundongos , Células Th2 , Linfopoietina do Estroma do Timo
4.
Cytokine ; 84: 88-98, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27259168

RESUMO

Interleukin (IL)-36 cytokines belong to the IL-1 family and include three agonists, IL-36 α, ß and γ and one inhibitor, IL-36 receptor antagonist (IL-36Ra). IL-36 and IL-1 (α and ß) activate similar intracellular pathways via their related heterodimeric receptors, IL-36R/IL-1RAcP and IL-1R1/IL-1RAcP, respectively. However, excessive IL-36 versus IL-1 signaling induces different phenotypes in humans, which may be related to differential expression of their respective receptors. We examined the expression of IL-36R, IL-1R1 and IL-1RAcP mRNA in human peripheral blood, tonsil and skin immune cells by RT-qPCR. Monocyte-derived dendritic cells (MDDC), M0, M1 or M2-polarized macrophages, primary keratinocytes, dermal macrophages and Langerhans cells (LC) were stimulated with IL-1ß or IL-36ß. Cytokine production was assessed by RT-qPCR and immunoassays. The highest levels of IL-36R mRNA were found in skin-derived keratinocytes, LC, dermal macrophages and dermal CD1a(+) DC. In the blood and in tonsils, IL-36R mRNA was predominantly found in myeloid cells. By contrast, IL-1R1 mRNA was detected in almost all cell types with higher levels in tonsil and skin compared to peripheral blood immune cells. IL-36ß was as potent as IL-1ß in stimulating M2 macrophages, keratinocytes and LC, less potent than IL-1ß in stimulating M0 macrophages and MDDC, and exerted no effects in M1 and dermal macrophages. Levels of IL-1Ra diminished the ability of M2 macrophages to respond to IL-1. Taken together, these data are consistent with the association of excessive IL-36 signaling with an inflammatory skin phenotype and identify human LC and M2 macrophages as new IL-36 target cells.


Assuntos
Inflamação/metabolismo , Proteína Acessória do Receptor de Interleucina-1/metabolismo , Queratinócitos/metabolismo , Células de Langerhans/metabolismo , Macrófagos/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Receptores de Interleucina/metabolismo , Células Cultivadas , Células Dendríticas/metabolismo , Humanos , Monócitos/metabolismo , Células Mieloides/metabolismo , RNA Mensageiro/metabolismo , Pele/metabolismo
5.
Exp Dermatol ; 23(5): 354-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24629018

RESUMO

Epidermal Langerhans cells (LCs) and dermal dendritic cells (dDCs) capture cutaneous antigens and present them to T-cells in lymph nodes (LNs). The function of LCs and Langerin+ dDCs was extensively studied in the mouse, but their anatomical repartition is unknown. Here, we found LCs in back skin, footpads and tail skin of C57BL/6, BALB/c, 129/Sv and CBA/J mice. Langerin+ dDCs were readily observed in back skin of all strains, but only in footpads and tail of BALB/c and CBA/J mice. Similarly, while LCs were equally present in all LNs and strains, Langerin+ dDCs were found in popliteal LNs (draining footpads) only in BALB/c and CBA/J mice. The sciatic LNs, which we identified as the major tail-draining lymphoid organ, were devoid of Langerin+ dDCs in all strains. Thus, functionally different DCs reside in different skin areas, with variations among mouse strains, implying a potential impact on the cutaneous immune reaction.


Assuntos
Antígenos de Superfície/metabolismo , Células Dendríticas/metabolismo , Membro Posterior/metabolismo , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose/metabolismo , Pele/metabolismo , Cauda/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Neoplasias/metabolismo , Antígeno CD11c/metabolismo , Moléculas de Adesão Celular/metabolismo , Células Dendríticas/citologia , Molécula de Adesão da Célula Epitelial , Inflamação , Cadeias alfa de Integrinas/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA
6.
J Immunol ; 188(5): 2146-55, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22291181

RESUMO

Incorporation of Ags by dendritic cells (DCs) increases when Ags are targeted to endocytic receptors by mAbs. We have previously demonstrated in the mouse that mAbs against C-type lectins administered intradermally are taken up by epidermal Langerhans cells (LCs), dermal Langerin(neg) DCs, and dermal Langerin(+) DCs in situ. However, the relative contribution of these skin DC subsets to the induction of immune responses after Ag targeting has not been addressed in vivo. We show in this study that murine epidermal LCs and dermal DCs transport intradermally injected mAbs against the lectin receptor DEC-205/CD205 in vivo. Skin DCs targeted in situ with mAbs migrated through lymphatic vessels in steady state and inflammation. In the skin-draining lymph nodes, targeting mAbs were found in resident CD8α(+) DCs and in migrating skin DCs. More than 70% of targeted DCs expressed Langerin, including dermal Langerin(+) DCs and LCs. Numbers of targeted skin DCs in the nodes increased 2-3-fold when skin was topically inflamed by the TLR7 agonist imiquimod. Complete removal of the site where OVA-coupled anti-DEC-205 had been injected decreased endogenous cytotoxic responses against OVA peptide-loaded target cells by 40-50%. Surprisingly, selective ablation of all Langerin(+) skin DCs in Langerin-DTR knock-in mice did not affect such responses independently of the adjuvant chosen. Thus, in cutaneous immunization strategies where Ag is targeted to DCs, Langerin(+) skin DCs play a major role in transport of anti-DEC-205 mAb, although Langerin(neg) dermal DCs and CD8α(+) DCs are sufficient to subsequent CD8(+) T cell responses.


Assuntos
Anticorpos/administração & dosagem , Antígenos CD/imunologia , Antígenos de Superfície/biossíntese , Células Dendríticas/imunologia , Mediadores da Inflamação/fisiologia , Lectinas Tipo C/biossíntese , Lectinas Tipo C/imunologia , Lectinas de Ligação a Manose/biossíntese , Receptores de Superfície Celular/imunologia , Pele/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Antígenos de Superfície/fisiologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Técnicas de Introdução de Genes , Mediadores da Inflamação/metabolismo , Injeções Intradérmicas , Células de Langerhans/imunologia , Células de Langerhans/metabolismo , Lectinas Tipo C/fisiologia , Linfonodos/imunologia , Linfonodos/metabolismo , Linfonodos/patologia , Lectinas de Ligação a Manose/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Antígenos de Histocompatibilidade Menor , Técnicas de Cultura de Órgãos , Transporte Proteico/genética , Transporte Proteico/imunologia , Ratos , Pele/metabolismo , Pele/patologia , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/patologia
7.
Bioconjug Chem ; 24(11): 1813-23, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24134734

RESUMO

Mannoside glycolipid conjugates are able to inhibit human immunodeficiency virus type 1 (HIV-1) trans-infection mediated by human dendritic cells (DCs). The conjugates are formed by three building blocks: a linear or branched mannose head, a hydrophilic linker, and a 24-carbon lipid chain. We have shown that, even as single molecules, these compounds efficiently target mannose-binding lectins, such as DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN) important for HIV-1 transmission. With the goal to optimize their inhibitory activity by supramolecular structure formation, we have compared saturated and unsaturated conjugates, as single molecules, self-assemblies of dynamic micelles, and photopolymerized cross-linked polymers. Surface plasmon resonance showed that, unexpectedly, polymers of trivalent conjugates did not display a higher binding affinity for DC-SIGN than single molecules. Interactions on a chip or in solution were independent of calcium; however, binding to DCs was inhibited by a calcium chelator. Moreover, HIV-1 trans-infection was mostly inhibited by dynamic micelles and not by rigid polymers. The inhibition data revealed a clear correlation between the structure and molecular assembly of a conjugate and its biological antiviral activity. We present an interaction model between DC-SIGN and conjugates-either single molecules, micelles, or polymers-that highlights that the most effective interactions by dynamic micelles involve both mannose heads and lipid chains. Our data reveal that trivalent glycolipid conjugates display the highest microbicide potential for HIV prophylaxis, as dynamic micelles conjugates and not as rigid polymers.


Assuntos
Fármacos Anti-HIV/farmacologia , Glicolipídeos/farmacologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/transmissão , HIV-1/efeitos dos fármacos , Manosídeos/farmacologia , Micelas , Polímeros/farmacologia , Fármacos Anti-HIV/química , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/virologia , Relação Dose-Resposta a Droga , Glicolipídeos/química , Infecções por HIV/imunologia , HIV-1/fisiologia , Humanos , Manosídeos/química , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Estrutura Molecular , Polímeros/química , Espectrometria de Fluorescência , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Termodinâmica
8.
Sci Rep ; 12(1): 8415, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589750

RESUMO

Hidradenitis suppurativa (HS) is a recurrent inflammatory skin disease with a complex etiopathogenesis whose treatment poses a challenge in the clinical practice. Here, we present a novel integrated pipeline produced by the European consortium BATMAN (Biomolecular Analysis for Tailored Medicine in Acne iNversa) aimed at investigating the molecular pathways involved in HS by developing new diagnosis algorithms and building cellular models to pave the way for personalized treatments. The objectives of our european Consortium are the following: (1) identify genetic variants and alterations in biological pathways associated with HS susceptibility, severity and response to treatment; (2) design in vitro two-dimensional epithelial cell and tri-dimensional skin models to unravel the HS molecular mechanisms; and (3) produce holistic health records HHR to complement medical observations by developing a smartphone application to monitor patients remotely. Dermatologists, geneticists, immunologists, molecular cell biologists, and computer science experts constitute the BATMAN consortium. Using a highly integrated approach, the BATMAN international team will identify novel biomarkers for HS diagnosis and generate new biological and technological tools to be used by the clinical community to assess HS severity, choose the most suitable therapy and follow the outcome.


Assuntos
Dermatite , Hidradenite Supurativa , Biomarcadores , Dermatite/complicações , Hidradenite Supurativa/diagnóstico , Hidradenite Supurativa/genética , Hidradenite Supurativa/terapia , Saúde Holística , Humanos , Pele
9.
Adv Healthc Mater ; 11(19): e2200195, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36057996

RESUMO

Osteosarcoma (OS) is the most common primary bone cancer, where the overall 5-year surviving rate is below 20% in resistant forms. Accelerating cures for those poor outcome patients remains a challenge. Nevertheless, several studies of agents targeting abnormal cancerous pathways have yielded disappointing results when translated into clinic because of the lack of accurate OS preclinical modeling. So, any effort to design preclinical drug testing may consider all inter-, intra-, and extra-tumoral heterogeneities throughout models mimicking extracellular and immune microenvironment. Therefore, the bioengineering of patient-derived models reproducing the OS heterogeneity, the interaction with tumor-associated macrophages (TAMs), and the modulation of oxygen concentrations additionally to recreation of bone scaffold is proposed here. Eight 2D preclinical models mimicking several OS clinical situations and their TAMs in hypoxic conditions are developed first and, subsequently, the paired 3D models faithfully preserving histological and biological characteristics are generated. It is possible to shape reproducibly M2-like macrophages cultured with all OS patient-derived cell lines in both dimensions. The final 3D models pooling all heterogeneity features are providing accurate proliferation and migration data to understand the mechanisms involved in OS and immune cells/biomatrix interactions and sustained such that engineered 3D preclinical systems will improve personalized medicine.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Neoplasias Ósseas/patologia , Osso e Ossos/metabolismo , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Humanos , Osteossarcoma/metabolismo , Oxigênio , Microambiente Tumoral
10.
Med Sci (Paris) ; 37(1): 68-76, 2021 Jan.
Artigo em Francês | MEDLINE | ID: mdl-33492221

RESUMO

The immune system and the sensory nervous system are responsible for perceiving danger under distinct yet complementary forms. In the last few years, neuroimmune interactions have become an important topic of dermatological research for conditions including wound healing, atopic dermatitis and psoriasis. We present here a selection of tridimensional in vitro models that reproduce skin structure and integrate an immune or a sensory function. Future evolutions of such models are expected to greatly contribute in a better understanding of reciprocal influences between sensory nervous system and immune system.


TITLE: Modélisation tridimensionnelle in vitro des systèmes nerveux et immunitaire de la peau. ABSTRACT: Le système immunitaire et le système nerveux sensoriel sont responsables de la perception du danger, sous des formes distinctes mais complémentaires. Ces dernières années, les interactions neuro-immunes se sont imposées comme un axe de recherche important en dermatologie pour comprendre la cicatrisation, la dermatite atopique ou le psoriasis. Nous présentons ici une sélection de modèles tridimensionnels in vitro reproduisant la structure de la peau et intégrant une fonction immunitaire ou sensorielle. Les évolutions futures de ces modèles permettront d'obtenir une vision aussi complète que possible des influences réciproques entre système immunitaire et système nerveux sensoriel.


Assuntos
Modelos Biológicos , Pele/imunologia , Pele/inervação , Técnicas de Cultura de Tecidos , Animais , Células Cultivadas , Humanos , Neuroimunomodulação/fisiologia , Técnicas de Cultura de Órgãos , Pele/patologia , Técnicas de Cultura de Tecidos/métodos , Técnicas de Cultura de Tecidos/tendências , Engenharia Tecidual/métodos , Engenharia Tecidual/tendências , Alicerces Teciduais , Cicatrização/fisiologia
11.
Immunol Cell Biol ; 88(4): 424-30, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20368713

RESUMO

Vaccinations in medicine are commonly administered through the skin. Therefore, the vaccine is immunologically processed by antigen-presenting cells of the skin. There is recent evidence that the clinically less often used intradermal route is effective; in cases even superior to the conventional subcutaneous or intramuscular route. Professional antigen-presenting cells of the skin comprise epidermal Langerhans cells (CD207/langerin(+)), dermal langerin(-) and dermal langerin(+) dendritic cells (DCs). In human skin, langerin(-) dermal DCs can be further subdivided on the basis of their reciprocal CD1a and CD14 expression. The relative contributions of these subsets to the generation of immunity or tolerance are still unclear. Langerhans cells in human skin seem to be specialized for induction of cytotoxic T lymphocytes. Likewise, mouse Langerhans cells are capable of cross-presentation and of protecting against experimental tumours. It is desirable to harness these properties for immunotherapy. A promising strategy to dramatically improve the outcome of vaccinations is 'antigen targeting'. Thereby, the vaccine is delivered directly and selectively to defined types of skin DCs. Targeting is achieved by means of coupling antigen to antibodies that recognize cell surface receptors on DCs. This approach is being widely explored. Little is known, however, about the events that take place in the skin and the DCs subsets involved therein. This topic will be discussed in this article.


Assuntos
Células de Langerhans/imunologia , Vacinas/imunologia , Animais , Antígenos CD/imunologia , Humanos , Lectinas Tipo C/imunologia , Lectinas de Ligação a Manose/imunologia
13.
Eur J Pharm Biopharm ; 152: 348-357, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32479782

RESUMO

Liposomes are powerful tools for the optimization of peptides and adjuvant composition in cancer vaccines. Here, we take advantage of a liposomal platform versatility to develop three vaccine candidates associating a peptide from HA influenza virus protein as CD4 epitope, a peptide from HPV16 E7 oncoprotein as CD8 epitope and TLR4, TLR2/6 or NOD1 agonists as adjuvant. Liposomal vaccine containing MPLA (TLR4 liposomes), are the most effective treatment against the HPV-transformed orthotopic lung tumor mouse model, TC-1. This vaccine induces a potent Th1-oriented antitumor immunity, which leads to a significant reduction in tumor growth and a prolonged survival of mice, even when injected after tumor appearance. This efficacy is dependent on CD8+ T cells. Subcutaneous injection of this treatment induces the migration of skin DCs to draining lymph nodes. Interestingly, TLR2/6 liposomes trigger a weaker Th1-immune response which is not sufficient for the induction of a prolonged antitumor activity. Although NOD1 liposome treatment results in the control of early tumor growth, it does not extend mice survival. Surprisingly, the antitumor activity of NOD1 vaccine is not associated with a specific adaptive immune response. This study shows that our modulable platform can be used for the strategical development of vaccines.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia , Lipossomos/química , Neoplasias Pulmonares/tratamento farmacológico , Proteínas NLR/agonistas , Receptores Toll-Like/agonistas , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Vacinas Anticâncer/química , Vacinas Anticâncer/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/química , Peptídeos/farmacologia
14.
Cancer Immunol Immunother ; 58(7): 1137-47, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18677477

RESUMO

Langerhans cells, a subset of skin dendritic cells in the epidermis, survey peripheral tissue for invading pathogens. In recent functional studies it was proven that Langerhans cells can present exogenous antigen not merely on major histocompatibility complexes (MHC)-class II molecules to CD4+ T cells, but also on MHC-class I molecules to CD8+ T cells. Immune responses against topically applied antigen could be measured in skin-draining lymph nodes. Skin barrier disruption or co-application of adjuvants was required for maximal induction of T cell responses. Cytotoxic T cells induced by topically applied antigen inhibited tumor growth in vivo, thus underlining the potential of Langerhans cells for immunotherapy. Here we review recent work and report novel observations relating to the potential use of Langerhans cells for immunotherapy. We investigated the potential of epicutaneous immunization strategies in which resident skin dendritic cells are loaded with tumor antigen in situ. This contrasts with current clinical approaches, where dendritic cells generated from progenitors in blood are loaded with tumor antigen ex vivo before injection into cancer patients. In the current study, we applied either fluorescently labeled protein antigen or targeting antibodies against DEC-205/CD205 and langerin/CD207 topically onto barrier-disrupted skin and examined antigen capture and transport by Langerhans cells. Protein antigen could be detected in Langerhans cells in situ, and they were the main skin dendritic cell subset transporting antigen during emigration from skin explants. Potent in vivo proliferative responses of CD4+ and CD8+ T cells were measured after epicutaneous immunization with low amounts of protein antigen. Targeting antibodies were mainly transported by langerin+ migratory dendritic cells of which the majority represented migratory Langerhans cells and a smaller subset the new langerin+ dermal dendritic cell population located in the upper dermis. The preferential capture of topically applied antigen by Langerhans cells and their ability to induce potent CD4+ and CD8+ T cell responses emphasizes their potential for epicutaneous immunization strategies.


Assuntos
Antígenos de Neoplasias/imunologia , Epiderme/imunologia , Imunoterapia Ativa/métodos , Células de Langerhans/imunologia , Neoplasias/terapia , Animais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Epiderme/metabolismo , Humanos , Células de Langerhans/metabolismo , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose/imunologia , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Ovalbumina/imunologia
15.
Eur J Med Chem ; 169: 111-120, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30870792

RESUMO

Glycolipid mimetics consisting of a bicyclic polyhydroxypiperidine-cyclic carbamate core and a pseudoanomeric hydrophobic tail, termed sp2-iminosugar glycolipids (sp2-IGLs), target microglia during neuroinflammatory processes. Here we have synthesized and investigated new variants of sp2-IGLs for their ability to suppress the activation of human monocyte-derived dendritic cells (DCs) by lipopolysaccharide (LPS) signaling through Toll-like receptor 4. We report that the best lead was (1R)-1-dodecylsulfonyl-5N,6O-oxomethylidenenojirimycin (DSO2-ONJ), able to inhibit LPS-induced TNFα production and maturation of DCs. Immunovisualization experiments, using a mannoside glycolipid conjugate (MGC) that also suppress LPS-mediated DC activation as control, evidenced a distinct mode of action for the sp2-IGLs: unlike MGCs, DSO2-ONJ did not elicit internalization of the LPS co-receptor CD14 or induce its co-localization with the Toll-like receptor 4. In a mouse model of LPS-induced acute inflammation, DSO2-ONJ demonstrated anti-inflammatory activity by inhibiting the production of the pro-inflammatory interleukin-6. The ensemble of the data highlights sp2-IGLs as a promising new class of molecules against inflammation by interfering in Toll-like receptor intracellular signaling.


Assuntos
Glicolipídeos/farmacologia , Inflamação/tratamento farmacológico , Lipopolissacarídeos/antagonistas & inibidores , Doença Aguda , Animais , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Relação Dose-Resposta a Droga , Glicolipídeos/síntese química , Glicolipídeos/química , Humanos , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Relação Estrutura-Atividade
16.
Immunology ; 123(3): 339-47, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18217955

RESUMO

Langerin/CD207 is expressed by a subset of dendritic cells (DC), the epithelial Langerhans cells. However, langerin is also detected among lymphoid tissue DC. Here, we describe striking differences in langerin-expressing cells between inbred mouse strains. While langerin+ cells are observed in comparable numbers and with comparable phenotypes in the epidermis, two distinct DC subsets bear langerin in peripheral, skin-draining lymph nodes of BALB/c mice (CD11c(high) CD8alpha(high) and CD11c(low) CD8alpha(low)), whereas only the latter subset is present in C57BL/6 mice. The CD11c(high) subset is detected in mesenteric lymph nodes and spleen of BALB/c mice, but is virtually absent from C57BL/6 mice. Similar differences are observed in other mouse strains. CD11c(low) langerin+ cells represent skin-derived Langerhans cells, as demonstrated by their high expression of DEC-205/CD205, maturation markers, and recruitment to skin-draining lymph nodes upon imiquimod-induced inflammation. It will be of interest to determine the role of lymphoid tissue-resident compared to skin-derived langerin+ DC.


Assuntos
Antígenos de Superfície/metabolismo , Células Dendríticas/imunologia , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose/metabolismo , Animais , Antígenos CD/metabolismo , Epiderme/imunologia , Imunofenotipagem , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos , Antígenos de Histocompatibilidade Menor , Receptores de Superfície Celular/metabolismo , Especificidade da Espécie , Baço/imunologia
17.
Immunobiology ; 213(9-10): 715-28, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18926287

RESUMO

Langerhans cells and dermal dendritic cells migrate to the draining lymph nodes through dermal lymphatic vessels. They do so in the steady-state and under inflammatory conditions. Peripheral T cell tolerance or T cell priming, respectively, are the consequences of migration. The nature of dendritic cell-containing vessels was mostly defined by electron microscopy or by their lack of blood endothelial markers. Selective markers for murine lymph endothelium were hitherto rare or not available. Here, we utilised recently developed antibodies against the murine hyaluronan receptor, LYVE-1, to study the lymph vessel network in mouse skin in more detail. In hairless skin from the ears, lymph vessels were spread out in a horizontal plane. They formed anastomoses, and they possessed frequent blind endings that were occasionally open. Lymph vessels were wider than blood vessels, which were identified by their strong CD31 expression. In body wall skin LYVE-1 reactive vessels did not extend laterally but they dived straight down into the deeper dermis. There, they are connected to each other and formed a network similar to ear skin. The number and width of lymph vessels did not grossly change upon inflammatory stimuli such as skin explant culture or tape stripping. There were also no marked changes in caliber in response to the TLR 7/8 ligand Imiquimod. Double-labelling experiments of cultured skin showed that most of the strongly cell surface MHC II-expressing (i.e. activated) dendritic cells were confined to the lymph vessels. Langerin/CD207(+) cells within this population appeared later than dermal dendritic cells, i.e. langerin-negative cells. Comparable results were obtained after stimulating the skin in vivo with the TLR 7/8 ligand Imiquimod or by tape stripping. In untreated skin (i.e. steady state) a few MHC II(+) and Langerin/CD207(+) cells, presumably migrating skin dendritic cells including epidermal Langerhans cells, were consistently observed within the lymph vessels. The novel antibody reagents may serve as important tools to further study the dendritic cell traffic in the skin under physiological conditions as well as in conditions of adoptive dendritic cell transfer in immunotherapy.


Assuntos
Células Dendríticas/fisiologia , Glicoproteínas/fisiologia , Células de Langerhans/fisiologia , Vasos Linfáticos/anatomia & histologia , Pele/imunologia , Animais , Anticorpos/imunologia , Movimento Celular/fisiologia , Células Dendríticas/citologia , Células de Langerhans/citologia , Vasos Linfáticos/metabolismo , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pele/citologia
18.
Acta Biomater ; 82: 93-101, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30316025

RESUMO

Cutaneous innervation is increasingly recognized as a major element of skin physiopathology through the neurogenic inflammation driven by neuropeptides that are sensed by endothelial cells and the immune system. To investigate this process in vitro, models of innervated tissue-engineered skin (TES) were developed, yet exclusively with murine sensory neurons extracted from dorsal root ganglions. In order to build a fully human model of innervated TES, we used induced pluripotent stem cells (iPSC) generated from human skin fibroblasts. Nearly 100% of the iPSC differentiated into sensory neurons were shown to express the neuronal markers BRN3A and ß3-tubulin after 19 days of maturation. In addition, these cells were also positive to TRPV1 and neurofilament M, and some of them expressed Substance P, TrkA and TRPA1. When stimulated with molecules inducing neuropeptide release, iPSC-derived neurons released Substance P and CGRP, both in conventional monolayer culture and after seeding in a 3D fibroblast-populated collagen sponge model. Schwann cells, the essential partners of neurons for function and axonal migration, were also successfully differentiated from human iPSC as shown by their expression of the markers S100, GFAP, p75 and SOX10. When cultured for one additional month in the TES model, iPSC-derived neurons seeded at the bottom of the sponge formed a network of neurites spanning the whole TES up to the epidermis, but only when combined with mouse or iPSC-derived Schwann cells. This unique model of human innervated TES should be highly useful for the study of cutaneous neuroinflammation. STATEMENT OF SIGNIFICANCE: The purpose of this work was to develop in vitro an innovative fully human tissue-engineered skin enabling the investigation of the influence of cutaneous innervation on skin pathophysiology. To reach that aim, neurons were differentiated from human induced pluripotent stem cells (iPSCs) generated from normal human skin fibroblasts. This innervated tissue-engineered skin model will be the first one to show iPSC-derived neurons can be successfully used to build a 3D nerve network in vitro. Since innervation has been recently recognized to play a central role in many human skin diseases, such as psoriasis and atopic dermatitis, this construct promises to be at the forefront to model these diseases while using patient-derived cells.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Células de Schwann/metabolismo , Células Receptoras Sensoriais/metabolismo , Pele/inervação , Pele/metabolismo , Engenharia Tecidual , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células de Schwann/citologia , Células Receptoras Sensoriais/citologia , Pele/citologia
19.
Antiviral Res ; 154: 116-123, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29630976

RESUMO

Dengue virus (DENV), a mosquito-borne flavivirus, causes severe and potentially fatal symptoms in millions of infected individuals each year. Although dengue fever represents a major global public health problem, the vaccines or antiviral drugs proposed so far have not shown sufficient efficacy and safety, calling for new antiviral developments. Here we have shown that a mannoside glycolipid conjugate (MGC) bearing a trimannose head with a saturated lipid chain inhibited DENV productive infection. It showed remarkable cell promiscuity, being active in human skin dendritic cells, hepatoma cell lines and Vero cells, and was active against all four DENV serotypes, with an IC50 in the low micromolar range. Time-of-addition experiments and structure-activity analyses revealed the importance of the lipid chain to interfere with an early viral infection step. This, together with a correlation between antiviral activity and membrane polarization by the lipid moiety indicated that the inhibitor functions by blocking viral envelope fusion with the endosome membrane. These finding establish MGCs as a novel class of antivirals against the DENV.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Glicolipídeos/farmacologia , Manosídeos/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Chlorocebus aethiops , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/virologia , Vírus da Dengue/fisiologia , Descoberta de Drogas , Glicolipídeos/química , Células Hep G2 , Humanos , Concentração Inibidora 50 , Manosídeos/química , Sorogrupo , Células Vero
20.
Med Sci (Paris) ; 39(11): 876-878, 2023 11.
Artigo em Francês | MEDLINE | ID: mdl-38018932

RESUMO

Title: Pour une bonne compréhension et un bon usage du terme « organoïdes ¼. Abstract: Depuis une dizaine d'années, des progrès considérables ont été réalisés concernant les conditions qui permettent à des cellules de s'auto-organiser dans l'espace comme elles le font lors des phases précoces du développement embryonnaire ou dans certains tissus adultes. On nomme ainsi « organoïdes ¼ des structures en trois dimensions complexes, organisées et intégrant plusieurs types cellulaires, qui peuvent reproduire in vitro certaines fonctions d'un organe. Toutefois, ces organoïdes ne peuvent actuellement reproduire à l'identique une architecture anatomique et fonctionnelle complète. Bien qu'utilisé pour des raisons de simplification pour la communication, en particulier dans la presse généraliste, il est donc abusif d'utiliser le terme « mini-organes ¼ pour décrire ces structures.


Assuntos
Organoides , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA