Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Cancer ; 16(1): 781, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27724856

RESUMO

BACKGROUND: The successful targeting of neuroblastoma (NB) by associating tumor-initiating cells (TICs) is a major challenge in the development of new therapeutic strategies. The subfamily of aldehyde dehydrogenases 1 (ALDH1) isoenzymes, which comprises ALDH1A1, ALDH1A2, and ALDH1A3, is involved in the synthesis of retinoic acid, and has been identified as functional stem cell markers in diverse cancers. By combining serial neurosphere passages with gene expression profiling, we have previously identified ALDH1A2 and ALDH1A3 as potential NB TICs markers in patient-derived xenograft tumors. In this study, we explored the involvement of ALDH1 isoenzymes and the related ALDH activity in NB aggressive properties. METHODS: ALDH activity and ALDH1A1/A2/A3 expression levels were measured using the ALDEFLUOR™ kit, and by real-time PCR, respectively. ALDH activity was inhibited using the specific ALDH inhibitor diethylaminobenzaldehyde (DEAB), and ALDH1A3 gene knock-out was generated through the CRISPR/Cas9 technology. RESULTS: We first confirmed the enrichment of ALDH1A2 and ALDH1A3 mRNA expression in NB cell lines and patient-derived xenograft tumors during neurosphere passages. We found that high ALDH1A1 expression was associated with less aggressive NB tumors and cell lines, and correlated with favorable prognostic factors. In contrast, we observed that ALDH1A3 was more widely expressed in NB cell lines and was associated with poor survival and high-risk prognostic factors. We also identified an important ALDH activity in various NB cell lines and patient-derived xenograft tumors. Specific inhibition of ALDH activity with diethylaminobenzaldehyde (DEAB) resulted in a strong reduction of NB cell clonogenicity, and TIC self-renewal potential, and partially enhanced NB cells sensitivity to 4-hydroxycyclophosphamide. Finally, the specific knock-out of ALDH1A3 via CRISPR/Cas9 gene editing reduced NB cell clonogenicity, and mediated a cell type-dependent inhibition of TIC self-renewal properties. CONCLUSIONS: Together our data uncover the participation of ALDH enzymatic activity in the aggressive properties and 4-hydroxycyclophosphamide resistance of NB, and show that the specific ALDH1A3 isoenzyme increases the aggressive capacities of a subset of NB cells.


Assuntos
Aldeído Desidrogenase/metabolismo , Neuroblastoma/diagnóstico , Neuroblastoma/enzimologia , Fenótipo , Aldeído Desidrogenase/genética , Família Aldeído Desidrogenase 1 , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Ativação Enzimática , Expressão Gênica , Técnicas de Inativação de Genes , Xenoenxertos , Humanos , Isoenzimas , Camundongos , Neuroblastoma/genética , Prognóstico , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo , Transcriptoma
2.
Pharmaceutics ; 15(9)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37765300

RESUMO

Autologous cell therapy manufacturing timeframes constitute bottlenecks in clinical management pathways of severe burn patients. While effective temporary wound coverings exist for high-TBSA burns, any means to shorten the time-to-treatment with cytotherapeutic skin grafts could provide substantial therapeutic benefits. This study aimed to establish proofs-of-concept for a novel combinational cytotherapeutic construct (autologous/allogeneic DE-FE002-SK2 full dermo-epidermal graft) designed for significant cutaneous cell therapy manufacturing timeframe rationalization. Process development was based on several decades (four for autologous protocols, three for allogeneic protocols) of in-house clinical experience in cutaneous cytotherapies. Clinical grade dermal progenitor fibroblasts (standardized FE002-SK2 cell source) were used as off-the-freezer substrates in novel autologous/allogeneic dermo-epidermal bilayer sheets. Under vitamin C stimulation, FE002-SK2 primary progenitor fibroblasts rapidly produced robust allogeneic dermal templates, allowing patient keratinocyte attachment in co-culture. Notably, FE002-SK2 primary progenitor fibroblasts significantly outperformed patient fibroblasts for collagen deposition. An ex vivo de-epidermalized dermis model was used to demonstrate the efficient DE-FE002-SK2 construct bio-adhesion properties. Importantly, the presented DE-FE002-SK2 manufacturing process decreased clinical lot production timeframes from 6-8 weeks (standard autologous combined cytotherapies) to 2-3 weeks. Overall, these findings bear the potential to significantly optimize burn patient clinical pathways (for rapid wound closure and enhanced tissue healing quality) by combining extensively clinically proven cutaneous cell-based technologies.

3.
Pharmaceutics ; 15(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36678813

RESUMO

Allogeneic dermal progenitor fibroblasts constitute cytotherapeutic contenders for modern cutaneous regenerative medicine. Based on advancements in the relevant scientific, technical, and regulatory fields, translational developments have slowly yet steadily led to the clinical application of such biologicals and derivatives. To set the appropriate general context, the first aim of this study was to provide a current global overview of approved cell and gene therapy products, with an emphasis on cytotherapies for cutaneous application. Notable advances were shown for North America, Europe, Iran, Japan, and Korea. Then, the second and main aim of this study was to perform a retrospective analysis on the various applications of dermal progenitor fibroblasts and derivatives, as clinically used under the Swiss progenitor cell transplantation program for the past three decades. Therein, the focus was set on the extent and versatility of use of the therapies under consideration, their safety parameters, as well as formulation options for topical application. Quantitative and illustrative data were summarized and reported for over 300 patients treated with various cell-based or cell-derived preparations (e.g., progenitor biological bandages or semi-solid emulsions) in Lausanne since 1992. Overall, this study shows the strong current interest in biological-based approaches to cutaneous regenerative medicine from a global developmental perspective, as well as the consolidated local clinical experience gathered with a specific and safe allogeneic cytotherapeutic approach. Taken together, these current and historical elements may serve as tangible working bases for the further optimization of local and modern translational pathways for the provision of topical cytotherapeutic care.

4.
Methods Mol Biol ; 2286: 49-65, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32572700

RESUMO

Clinical experience gathered over two decades around therapeutic use of primary human dermal progenitor fibroblasts in burn patient populations has been at the forefront of regenerative medicine in Switzerland. Relative technical simplicity, ease of extensive serial multitiered banking, and high stability are major advantages of such cell types, assorted to ease of safety and traceability demonstration. Stringent optimization of cell source selection and standardization of biobanking protocols enables the safe and efficient harnessing of the considerable allogenic therapeutic potential yielded by primary progenitor cells. Swiss legal and regulatory requirements have led to the procurement of fetal tissues within a devised Fetal Progenitor Cell Transplantation Program in the Lausanne University Hospital. Proprietary nonenzymatic isolation of primary musculoskeletal cell types and subsequent establishment of progeny tiered cell banks under cGMP standards have enabled safe and effective management of acute and chronic cutaneous affections in various patient populations. Direct off-the-freezer seeding of viable dermal progenitor fibroblasts on a CE marked equine collagen scaffold is the current standard for delivery of the therapeutic biological materials to patients suffering from extensive and deep burns. Diversification in the clinical indications and delivery methods for these progenitor cells has produced excellent results for treatment of persistent ulcers, autograft donor site wounds, or chronic cutaneous affections such as eczema. Herein we describe the standard operating procedures for preparation and therapeutic deployment of the progenitor biological bandages within our translational musculoskeletal regenerative medicine program, as they are routinely used as adjuvants in our Burn Center to treat critically ailing patients.


Assuntos
Curativos Biológicos/normas , Células-Tronco Embrionárias Humanas/citologia , Guias de Prática Clínica como Assunto , Cultura Primária de Células/métodos , Reepitelização , Medicina Regenerativa/métodos , Preservação de Tecido/métodos , Curativos Biológicos/efeitos adversos , Queimaduras/terapia , Células Cultivadas , Humanos , Úlcera por Pressão/terapia , Cultura Primária de Células/normas , Medicina Regenerativa/normas , Ferida Cirúrgica/terapia , Preservação de Tecido/normas
5.
Biomedicines ; 9(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34440276

RESUMO

Cultured fibroblast progenitor cells (FPC) have been studied in Swiss translational regenerative medicine for over two decades, wherein clinical experience was gathered for safely managing burns and refractory cutaneous ulcers. Inherent FPC advantages include high robustness, optimal adaptability to industrial manufacture, and potential for effective repair stimulation of wounded tissues. Major technical bottlenecks in cell therapy development comprise sustainability, stability, and logistics of biological material sources. Herein, we report stringently optimized and up-scaled processing (i.e., cell biobanking and stabilization by lyophilization) of dermal FPCs, with the objective of addressing potential cell source sustainability and stability issues with regard to active substance manufacturing in cutaneous regenerative medicine. Firstly, multi-tiered FPC banking was optimized in terms of overall quality and efficiency by benchmarking key reagents (e.g., medium supplement source, dissociation reagent), consumables (e.g., culture vessels), and technical specifications. Therein, fetal bovine serum batch identity and culture vessel surface were confirmed, among other parameters, to largely impact harvest cell yields. Secondly, FPC stabilization by lyophilization was undertaken and shown to maintain critical functions for devitalized cells in vitro, potentially enabling high logistical gains. Overall, this study provides the technical basis for the elaboration of next-generation off-the-shelf topical regenerative medicine therapeutic products for wound healing and post-burn care.

6.
J Burn Care Res ; 42(5): 911-924, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-33970273

RESUMO

The complex management of severe burn victims requires an integrative collaboration of multidisciplinary specialists in order to ensure quality and excellence in healthcare. This multidisciplinary care has quickly led to the integration of cell therapies in clinical care of burn patients. Specific advances in cellular therapy together with medical care have allowed for rapid treatment, shorter residence in hospitals and intensive care units, shorter durations of mechanical ventilation, lower complications and surgery interventions, and decreasing mortality rates. However, naturally fluctuating patient admission rates increase pressure toward optimized resource utilization. Besides, European translational developments of cellular therapies currently face potentially jeopardizing challenges on the policy front. The aim of the present work is to provide key considerations in burn care with focus on architectural and organizational aspects of burn centers, management of cellular therapy products, and guidelines in evolving restrictive regulations relative to standardized cell therapies. Thus, based on our experience, we present herein integrated management of risks and costs for preserving and optimizing clinical care and cellular therapies for patients in dire need.


Assuntos
Unidades de Queimados/economia , Terapia Baseada em Transplante de Células e Tecidos/economia , Unidades de Terapia Intensiva/economia , Unidades de Queimados/organização & administração , Terapia Baseada em Transplante de Células e Tecidos/estatística & dados numéricos , Humanos , Unidades de Terapia Intensiva/organização & administração , Admissão do Paciente/economia
7.
Pharmaceuticals (Basel) ; 14(3)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33671009

RESUMO

Progenitor Biological Bandages (PBB) have been continuously applied clinically in the Lausanne Burn Center for over two decades. Vast translational experience and hindsight have been gathered, specifically for cutaneous healing promotion of donor-site grafts and second-degree pediatric burns. PBBs constitute combined Advanced Therapy Medicinal Products, containing viable cultured allogeneic fetal dermal progenitor fibroblasts. Such constructs may partly favor repair and regeneration of functional cutaneous tissues by releasing cytokines and growth factors, potentially negating the need for subsequent skin grafting, while reducing the formation of hypertrophic scar tissues. This retrospective case-control study (2010-2018) of pediatric second-degree burn patients comprehensively compared two initial wound treatment options (i.e., PBBs versus Aquacel® Ag, applied during ten to twelve days post-trauma). Results confirmed clinical safety of PBBs with regard to morbidity, mortality, and overall complications. No difference was detected between groups for length of hospitalization or initial relative burn surface decreasing rates. Nevertheless, a trend was observed in younger patients treated with PBBs, requiring fewer corrective interventions or subsequent skin grafting. Importantly, significant improvements were observed in the PBB group regarding hypertrophic scarring (i.e., reduced number of scar complications and related corrective interventions). Such results establish evidence of clinical benefits yielded by the Swiss fetal progenitor cell transplantation program and favor further implementation of specific cell therapies in highly specialized regenerative medicine.

8.
Swiss Med Wkly ; 149: w20079, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31104308

RESUMO

The earliest attempts at cell therapy can be attributed to Charles-Edward Brown-Séquard (1817–1894), who sought to treat senescence and aging by injecting animal gonad shreds into his contemporaries, a practice that was widespread in late 19th century. Since then, advances in science have enabled the development of biological substitutes to restore the function of various tissues. Skin was one of the first tissues to be regenerated. For severe burns, patient survival depends on the restoration of skin function as a barrier against pathogens and control of body temperature and fluid loss. We aim here to overview the different cell therapy techniques implemented at the University Hospital of Lausanne (CHUV), one of the two Swiss national centres of highly specialised medicine for burn care. In particular, we will describe the specific indications for each of the different therapies as well as future perspectives.


Assuntos
Queimaduras/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Regeneração , Transplante de Pele/métodos , Pele/fisiopatologia , Unidades de Queimados , Hospitais Universitários , Humanos , Suíça
9.
Mol Cancer ; 7: 55, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18549473

RESUMO

BACKGROUND: Histone deacetylase inhibitors (HDACi) are a new class of promising anti-tumour agent inhibiting cell proliferation and survival in tumour cells with very low toxicity toward normal cells. Neuroblastoma (NB) is the second most common solid tumour in children still associated with poor outcome in higher stages and, thus NB strongly requires novel treatment modalities. RESULTS: We show here that the HDACi Sodium Butyrate (NaB), suberoylanilide hydroxamic acid (SAHA) and Trichostatin A (TSA) strongly reduce NB cells viability. The anti-tumour activity of these HDACi involved the induction of cell cycle arrest in the G2/M phase, followed by the activation of the intrinsic apoptotic pathway, via the activation of the caspases cascade. Moreover, HDACi mediated the activation of the pro-apoptotic proteins Bid and BimEL and the inactivation of the anti-apoptotic proteins XIAP, Bcl-xL, RIP and survivin, that further enhanced the apoptotic signal. Interestingly, the activity of these apoptosis regulators was modulated by several different mechanisms, either by caspases dependent proteolytic cleavage or by degradation via the proteasome pathway. In addition, HDACi strongly impaired the hypoxia-induced secretion of VEGF by NB cells. CONCLUSION: HDACi are therefore interesting new anti-tumour agents for targeting highly malignant tumours such as NB, as these agents display a strong toxicity toward aggressive NB cells and they may possibly reduce angiogenesis by decreasing VEGF production by NB cells.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores de Histona Desacetilases , Neuroblastoma/enzimologia , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Butiratos/farmacologia , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Neuroblastoma/patologia , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Vorinostat
10.
Pain Manag ; 8(6): 441-453, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30175653

RESUMO

AIM: Limb amputation traumatically alters body image. Sensations rapidly prevail that the limb is still present and 85% of patients portray phantom limb pain. Throughout the testimonies of amputated patients with intense phantom limb pain, we show the difficulty in treating this chronic pain with current pharmacological and nonpharmacological therapies. PATIENTS & METHODS: We qualitatively analyzed the therapeutic choices of five amputees, the effectiveness of the treatments chosen and the impact on patients' quality-of-life. RESULTS & CONCLUSION: In general, patients who are refractory to pharmacological treatments are in favor of trying alternative therapies. It is therefore crucial to design a combined and personalized therapeutic plan under the coordination of a multidisciplinary team for the wellbeing of the patient.


Assuntos
Membro Fantasma/psicologia , Membro Fantasma/terapia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição da Dor , Dor Intratável/complicações , Assistência ao Paciente , Membro Fantasma/complicações , Resultado do Tratamento
11.
Medicine (Baltimore) ; 96(29): e7528, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28723767

RESUMO

Successful Plastic Surgery Residency training is subjected to evolving society pressure of lower hourly work weeks imposed by external committees, labor laws, and increased public awareness of patient care quality. Although innovative measures for simulation training of surgery are appearing, there is also the realization that basic anatomy training should be re-enforced and cadaver dissection is of utmost importance for surgical techniques.In the development of new technology for implantable neurostimulatory electrodes for the management of phantom limb pain in amputee patients, a design of a cadaveric model has been developed with detailed steps for innovative transfascicular insertion of electrodes. Overall design for electrode and cable implantation transcutaneous was established and an operating protocol devised.Microsurgery of the nerves of the upper extremities for interfascicular electrode implantation is described for the first time. Design of electrode implantation in cadaver specimens was adapted with a trocar delivery of cables and electrodes transcutaneous and stabilization of the electrode by suturing along the nerve. In addition, the overall operating arena environment with specific positions of the multidisciplinary team necessary for implantable electrodes was elaborated to assure optimal operating conditions and procedures during the organization of a first-in-man implantation study.Overall importance of plastic surgery training for new and highly technical procedures is of importance and particularly there is a real need to continue actual cadaveric training due to patient variability for nerve anatomic structures.


Assuntos
Cadáver , Dissecação/educação , Educação de Pós-Graduação em Medicina/métodos , Internato e Residência , Cirurgia Plástica/educação , Amputação Cirúrgica , Braço/cirurgia , Protocolos Clínicos , Eletrodos Implantados , Desenho de Equipamento , Humanos , Nervo Mediano/cirurgia , Microcirurgia/educação , Modelos Anatômicos , Procedimentos Neurocirúrgicos/educação , Equipe de Assistência ao Paciente , Membro Fantasma/etiologia , Membro Fantasma/cirurgia , Nervo Ulnar/cirurgia
12.
BMC Cancer ; 6: 214, 2006 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-16930472

RESUMO

BACKGROUND: Neuroblastoma (NB) is the second most common solid childhood tumour, an aggressive disease for which new therapeutic strategies are strongly needed. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in most tumour cells, but not in normal tissues and therefore represents a valuable candidate in apoptosis-inducing therapies. Caspase-8 is silenced in a subset of highly malignant NB cells, which results in full TRAIL resistance. In addition, despite constitutive caspase-8 expression, or its possible restoration by different strategies, NB cells remain weakly sensitive to TRAIL indicating a need to develop strategies to sensitise NB cells to TRAIL. Histone deacetylase inhibitors (HDACIs) are a new class of anti-cancer agent inducing apoptosis or cell cycle arrest in tumour cells with very low toxicity toward normal cells. Although HDACIs were recently shown to increase death induced by TRAIL in weakly TRAIL-sensitive tumour cells, the precise involved sensitisation mechanisms have not been fully identified. METHODS: NB cell lines were treated with various doses of HDACIs and TRAIL, then cytotoxicity was analysed by MTS/PMS proliferation assays, apoptosis was measured by the Propidium staining method, caspases activity by colorimetric protease assays, and (in)activation of apoptotic proteins by immunoblotting. RESULTS: Sub-toxic doses of HDACIs strongly sensitised caspase-8 positive NB cell lines to TRAIL induced apoptosis in a caspases dependent manner. Combined treatments increased the activation of caspases and Bid, and the inactivation of the anti-apoptotic proteins XIAP, Bcl-x, RIP, and survivin, thereby increasing the pro- to anti-apoptotic protein ratio. It also enhanced the activation of the mitochondrial pathway. Interestingly, the kinetics of caspases activation and inactivation of anti-apoptotic proteins is accelerated by combined treatment with TRAIL and HDACIs compared to TRAIL alone. In contrast, cell surface expression of TRAIL-receptors or TRAIL is not affected by sub-toxic doses of HDACIs. CONCLUSION: HDACIs were shown to activate the mitochondrial pathway and to sensitise NB cells to TRAIL by enhancing the amplitude of the apoptotic cascade and by restoring an apoptosis-prone ratio of pro- to anti-apoptotic proteins. Combining HDACIs and TRAIL could therefore represent a weakly toxic and promising strategy to target TRAIL-resistant tumours such as neuroblastomas.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Inibidores Enzimáticos/uso terapêutico , Inibidores de Histona Desacetilases , Glicoproteínas de Membrana/farmacologia , Neuroblastoma/tratamento farmacológico , Fator de Necrose Tumoral alfa/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteínas Reguladoras de Apoptose/farmacologia , Butiratos/farmacologia , Sobrevivência Celular , Inibidores Enzimáticos/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Proteínas Inibidoras de Apoptose , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Receptores do Fator de Necrose Tumoral/fisiologia , Transdução de Sinais/efeitos dos fármacos , Survivina , Ligante Indutor de Apoptose Relacionado a TNF , Células Tumorais Cultivadas , Vorinostat
14.
PLoS One ; 10(5): e0125616, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25955316

RESUMO

Neuroblastoma (NB) is one of the most deadly solid tumors of the young child, for which new efficient and targeted therapies are strongly needed. The CXCR4/CXCR7/CXCL12 chemokine axis has been involved in the progression and organ-specific dissemination of various cancers. In NB, CXCR4 expression was shown to be associated to highly aggressive undifferentiated tumors, while CXCR7 expression was detected in more differentiated and mature neuroblastic tumors. As investigated in vivo, using an orthotopic model of tumor cell implantation of chemokine receptor-overexpressing NB cells (IGR-NB8), the CXCR4/CXCR7/CXCL12 axis was shown to regulate NB primary and secondary growth, although without any apparent influence on organ selective metastasis. In the present study, we addressed the selective role of CXCR4 and CXCR7 receptors in the homing phase of metastatic dissemination using an intravenous model of tumor cell implantation. Tail vein injection into NOD-scid-gamma mice of transduced IGR-NB8 cells overexpressing CXCR4, CXCR7, or both receptors revealed that all transduced cell variants preferentially invaded the adrenal gland and typical NB metastatic target organs, such as the liver and the bone marrow. However, CXCR4 expression favored NB cell dissemination to the liver and the lungs, while CXCR7 was able to strongly promote NB cell homing to the adrenal gland and the liver. Finally, coexpression of CXCR4 and CXCR7 receptors significantly and selectively increased NB dissemination toward the bone marrow. In conclusion, CXCR4 and CXCR7 receptors may be involved in a complex and organ-dependent control of NB growth and selective homing, making these receptors and their inhibitors potential new therapeutic targets.


Assuntos
Quimiocina CXCL12/biossíntese , Neuroblastoma/genética , Receptores CXCR4/biossíntese , Receptores CXCR/biossíntese , Glândulas Suprarrenais/patologia , Animais , Medula Óssea/patologia , Proliferação de Células/genética , Quimiocina CXCL12/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Fígado/patologia , Pulmão/patologia , Camundongos , Invasividade Neoplásica/genética , Metástase Neoplásica , Neuroblastoma/patologia , Receptores CXCR/genética , Receptores CXCR4/genética , Transdução de Sinais/genética
15.
Oncotarget ; 5(12): 4452-66, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24947326

RESUMO

The anaplastic lymphoma kinase (ALK) gene is overexpressed, mutated or amplified in most neuroblastoma (NB), a pediatric neural crest-derived embryonal tumor. The two most frequent mutations, ALK-F1174L and ALK-R1275Q, contribute to NB tumorigenesis in mouse models, and cooperate with MYCN in the oncogenic process. However, the precise role of activating ALK mutations or ALK-wt overexpression in NB tumor initiation needs further clarification. Human ALK-wt, ALK-F1174L, or ALK-R1275Q were stably expressed in murine neural crest progenitor cells (NCPC), MONC-1 or JoMa1, immortalized with v-Myc or Tamoxifen-inducible Myc-ERT, respectively. While orthotopic implantations of MONC- 1 parental cells in nude mice generated various tumor types, such as NB, osteo/ chondrosarcoma, and undifferentiated tumors, due to v-Myc oncogenic activity, MONC-1-ALK-F1174L cells only produced undifferentiated tumors. Furthermore, our data represent the first demonstration of ALK-wt transforming capacity, as ALK-wt expression in JoMa1 cells, likewise ALK-F1174L, or ALK-R1275Q, in absence of exogenous Myc-ERT activity, was sufficient to induce the formation of aggressive and undifferentiated neural crest cell-derived tumors, but not to drive NB development. Interestingly, JoMa1-ALK tumors and their derived cell lines upregulated Myc endogenous expression, resulting from ALK activation, and both ALK and Myc activities were necessary to confer tumorigenic properties on tumor-derived JoMa1 cells in vitro.


Assuntos
Neuroblastoma/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Quinase do Linfoma Anaplásico , Animais , Diferenciação Celular , Genes myc , Humanos , Camundongos , Mutação , Crista Neural , Fosforilação , Células-Tronco , Regulação para Cima
16.
PLoS One ; 7(8): e43665, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22916293

RESUMO

Neuroblastoma (NB) is a typical childhood and heterogeneous neoplasm for which efficient targeted therapies for high-risk tumors are not yet identified. The chemokine CXCL12, and its receptors CXCR4 and CXCR7 have been involved in tumor progression and dissemination. While CXCR4 expression is associated to undifferentiated tumors and poor prognosis, the role of CXCR7, the recently identified second CXCL12 receptor, has not yet been elucidated in NB. In this report, CXCR7 and CXCL12 expressions were evaluated using a tissue micro-array including 156 primary and 56 metastatic NB tissues. CXCL12 was found to be highly associated to NB vascular and stromal structures. In contrast to CXCR4, CXCR7 expression was low in undifferentiated tumors, while its expression was stronger in matured tissues and specifically associated to differentiated neural tumor cells. As determined by RT-PCR, CXCR7 expression was mainly detected in N-and S-type NB cell lines, and was slightly induced upon NB cell differentiation in vitro. The relative roles of the two CXCL12 receptors were further assessed by overexpressing CXCR7 or CXCR4 receptor alone, or in combination, in the IGR-NB8 and the SH-SY5Y NB cell lines. In vitro functional analyses indicated that, in response to their common ligand, both receptors induced activation of ERK1/2 cascade, but not Akt pathway. CXCR7 strongly reduced in vitro growth, in contrast to CXCR4, and impaired CXCR4/CXCL12-mediated chemotaxis. Subcutaneous implantation of CXCR7-expressing NB cells showed that CXCR7 also significantly reduced in vivo growth. Moreover, CXCR7 affected CXCR4-mediated orthotopic growth in a CXCL12-producing environment. In such model, CXCR7, in association with CXCR4, did not induce NB cell metastatic dissemination. In conclusion, the CXCR7 and CXCR4 receptors revealed specific expression patterns and distinct functional roles in NB. Our data suggest that CXCR7 elicits anti-tumorigenic functions, and may act as a regulator of CXCR4/CXCL12-mediated signaling in NB.


Assuntos
Quimiocina CXCL12/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Receptores CXCR4/metabolismo , Receptores CXCR/metabolismo , Movimento Celular , Quimiocina CXCL12/genética , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Técnicas In Vitro , Neuroblastoma/genética , Fosforilação , Receptores CXCR/genética , Receptores CXCR4/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise Serial de Tecidos
17.
Neoplasia ; 13(10): 991-1004, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22028624

RESUMO

Neuroblastoma (NB) is a neural crest-derived childhood tumor characterized by a remarkable phenotypic diversity, ranging from spontaneous regression to fatal metastatic disease. Although the cancer stem cell (CSC) model provides a trail to characterize the cells responsible for tumor onset, the NB tumor-initiating cell (TIC) has not been identified. In this study, the relevance of the CSC model in NB was investigated by taking advantage of typical functional stem cell characteristics. A predictive association was established between self-renewal, as assessed by serial sphere formation, and clinical aggressiveness in primary tumors. Moreover, cell subsets gradually selected during serial sphere culture harbored increased in vivo tumorigenicity, only highlighted in an orthotopic microenvironment. A microarray time course analysis of serial spheres passages from metastatic cells allowed us to specifically "profile" the NB stem cell-like phenotype and to identify CD133, ABC transporter, and WNT and NOTCH genes as spheres markers. On the basis of combined sphere markers expression, at least two distinct tumorigenic cell subpopulations were identified, also shown to preexist in primary NB. However, sphere markers-mediated cell sorting of parental tumor failed to recapitulate the TIC phenotype in the orthotopic model, highlighting the complexity of the CSC model. Our data support the NB stem-like cells as a dynamic and heterogeneous cell population strongly dependent on microenvironmental signals and add novel candidate genes as potential therapeutic targets in the control of high-risk NB.


Assuntos
Perfilação da Expressão Gênica , Células-Tronco Neoplásicas/metabolismo , Neuroblastoma/genética , Esferoides Celulares/metabolismo , Antígeno AC133 , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Criança , Pré-Escolar , Feminino , Regulação Neoplásica da Expressão Gênica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/patologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Peptídeos/genética , Peptídeos/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Esferoides Celulares/patologia , Transplante Heterólogo , Células Tumorais Cultivadas , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
18.
PLoS One ; 2(10): e1016, 2007 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-17925864

RESUMO

Neuroblastoma (NB) is a heterogeneous, and particularly malignant childhood neoplasm in its higher stages, with a propensity to form metastasis in selected organs, in particular liver and bone marrow, and for which there is still no efficient treatment available beyond surgery. Recent evidence indicates that the CXCR4/CXCL12 chemokine/receptor axis may be involved in promoting NB invasion and metastasis. In this study, we explored the potential role of CXCR4 in the malignant behaviour of NB, using a combination of in vitro functional analyses and in vivo growth and metastasis assessment in an orthotopic NB mouse model. We show here that CXCR4 overexpression in non-metastatic CXCR4-negative NB cells IGR-NB8 and in moderately metastatic, CXCR4 expressing NB cells IGR-N91, strongly increased tumour growth of primary tumours and liver metastases, without altering the frequency or the pattern of metastasis. Moreover shRNA-mediated knock-down experiments confirmed our observations by showing that silencing CXCR4 in NB cells impairs in vitro and almost abrogates in vivo growth. High levels of CXCL12 were detected in the mouse adrenal gland (the primary tumour site), and in the liver suggesting a paracrine effect of host-derived CXCL12 on NB growth. In conclusion, this study reveals a yet unreported NB-specific predominant growth and survival-promoting role of CXCR4, which warrants a critical reconsideration of the role of CXCR4 in the malignant behaviour of NB and other cancers.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Receptores CXCR4/fisiologia , Animais , Células da Medula Óssea , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Inativação Gênica , Humanos , Fígado/metabolismo , Camundongos , Camundongos Nus , Modelos Biológicos , Invasividade Neoplásica , Transplante de Neoplasias , Receptores CXCR4/metabolismo
19.
Genes Chromosomes Cancer ; 45(5): 495-508, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16450357

RESUMO

Neuroblastoma is a heterogeneous neural crest-derived embryonic childhood neoplasm that is the second most common solid tumor found in children. Despite recent advances in combined therapy, the overall survival of patients with high-stage disease has not improved in the last decades. Treatment failure is in part attributed to multidrug resistance. To address the mechanisms involved in the development of multidrug resistance, we have generated two doxorubicin-resistant neuroblastoma cell lines (IGRN-91R and LAN-1R). These cells were shown to overexpress the MDR1 gene coding for the P-glycoprotein and were resistant to other MDR1- and non-MDR1-substrate drugs. Indeed, the MDR1 inhibitor verapamil only partially restored sensitivity to drugs, confirming that P-glycoprotein-mediated drug efflux was not responsible for 100% resistance. High-resolution and array-based comparative genomic hybridization analyses revealed the presence of an amplicon in the 7q21 region as the unique genomic alteration common to both doxorubicin-resistant cell lines. In addition to the MDR1 locus, this large amplified region is likely to harbor additional genes potentially involved in the development of drug resistance. This study represents the first molecular cytogenetic and genomic approach to identifying genomic regions involved in the multidrug-resistant phenotype of neuroblastoma. These results could lead to the identification of relevant target genes for the development of new therapeutic modalities.


Assuntos
Antineoplásicos/farmacologia , Cromossomos Humanos Par 7 , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neuroblastoma/genética , Sequência de Bases , Western Blotting , Caspase 3 , Caspases/metabolismo , Linhagem Celular Tumoral , Primers do DNA , Humanos , Hibridização in Situ Fluorescente , Neuroblastoma/enzimologia , Neuroblastoma/patologia , Reação em Cadeia da Polimerase
20.
Biochemistry ; 42(34): 10333-41, 2003 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-12939163

RESUMO

The calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein-3 (RAMP3) can assemble into a CRLR/RAMP3 heterodimeric receptor that exhibits the characteristics of a high affinity adrenomedullin receptor. RAMP3 participates in adrenomedullin (AM) binding via its extracellular N-terminus characterized by the presence of six highly conserved cysteine residues and four N-glycosylation consensus sites. Here, we assessed the usage of these conserved residues in cotranslational modifications of RAMP3 and addressed their role in functional expression of the CRLR/RAMP3 receptor. Using a Xenopus oocyte expression system, we show that (i) RAMP3 is assembled with CRLR as a multiple N-glycosylated species in which two, three, or four consensus sites are used; (ii) elimination of all N-glycans in RAMP3 results in a significant inhibition of receptor [(125)I]AM binding and an increase in the EC(50) value for AM; (iii) several lines of indirect evidence indicate that each of the six cysteines is involved in disulfide bond formation; (iv) when all cysteines are mutated to serines, RAMP3 is N-glycosylated at all four consensus sites, suggesting that disulfide bond formation inhibits N-gylcosylation; and (v) elimination of all cysteines abolishes adrenomedullin binding and leads to a complete loss of receptor function. Our data demonstrate that cotranslational modifications of RAMP3 play a critical role in the function of the CRLR/RAMP3 adrenomedullin receptor.


Assuntos
Cisteína/genética , Cisteína/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Receptores da Calcitonina/metabolismo , Receptores de Peptídeos/metabolismo , Adrenomedulina , Substituição de Aminoácidos , Animais , Sítios de Ligação , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina , Sequência Consenso , Dissulfetos/metabolismo , Glicosilação , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Oócitos/metabolismo , Peptídeos/metabolismo , Polissacarídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Ensaio Radioligante , Proteínas Modificadoras da Atividade de Receptores , Receptores de Adrenomedulina , Receptores da Calcitonina/química , Receptores de Peptídeos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA