Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 554
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(52): e2209960119, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36538479

RESUMO

Sensorimotor learning is a dynamic, systems-level process that involves the combined action of multiple neural systems distributed across the brain. Although much is known about the specialized cortical systems that support specific components of action (such as reaching), we know less about how cortical systems function in a coordinated manner to facilitate adaptive behavior. To address this gap, our study measured human brain activity using functional MRI (fMRI) while participants performed a classic sensorimotor adaptation task and used a manifold learning approach to describe how behavioral changes during adaptation relate to changes in the landscape of cortical activity. During early adaptation, areas in the parietal and premotor cortices exhibited significant contraction along the cortical manifold, which was associated with their increased covariance with regions in the higher-order association cortex, including both the default mode and fronto-parietal networks. By contrast, during Late adaptation, when visuomotor errors had been largely reduced, a significant expansion of the visual cortex along the cortical manifold was associated with its reduced covariance with the association cortex and its increased intraconnectivity. Lastly, individuals who learned more rapidly exhibited greater covariance between regions in the sensorimotor and association cortices during early adaptation. These findings are consistent with a view that sensorimotor adaptation depends on changes in the integration and segregation of neural activity across more specialized regions of the unimodal cortex with regions in the association cortex implicated in higher-order processes. More generally, they lend support to an emerging line of evidence implicating regions of the default mode network (DMN) in task-based performance.


Assuntos
Mapeamento Encefálico , Córtex Motor , Humanos , Encéfalo , Córtex Motor/diagnóstico por imagem , Imageamento por Ressonância Magnética , Aprendizagem
2.
J Neurosci ; 43(49): 8525-8535, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37884350

RESUMO

Skilled motor performance depends critically on rapid corrective responses that act to preserve the goal of the movement in the face of perturbations. Although it is well established that the gain of corrective responses elicited while reaching toward objects adapts to different contexts, little is known about the adaptability of corrective responses supporting the manipulation of objects after they are grasped. Here, we investigated the adaptability of the corrective response elicited when an object being lifted is heavier than expected and fails to lift off when predicted. This response involves a monotonic increase in vertical load force triggered, within ∼90 ms, by the absence of expected sensory feedback signaling lift off and terminated when actual lift off occurs. Critically, because the actual weight of the object cannot be directly sensed at the moment the object fails to lift off, any adaptation of the corrective response would have to be based on memory from previous lifts. We show that when humans, including men and women, repeatedly lift an object that on occasional catch trials increases from a baseline weight to a fixed heavier weight, they scale the gain of the response (i.e., the rate of force increase) to the heavier weight within two to three catch trials. We also show that the gain of the response scales, on the first catch trial, with the baseline weight of the object. Thus, the gain of the lifting response can be adapted by both short- and long-term experience. Finally, we demonstrate that this adaptation preserves the efficacy of the response across contexts.SIGNIFICANCE STATEMENT Here, we present the first investigation of the adaptability of the corrective lifting response elicited when an object is heavier than expected and fails to lift off when predicted. A striking feature of the response, which is driven by a sensory prediction error arising from the absence of expected sensory feedback, is that the magnitude of the error is unknown. That is, the motor system only receives a categorical error indicating that the object is heavier than expected but not its actual weight. Although the error magnitude is not known at the moment the response is elicited, we show that the response can be scaled to predictions of error magnitude based on both recent and long-term memories.


Assuntos
Força da Mão , Desempenho Psicomotor , Masculino , Humanos , Feminino , Retroalimentação , Desempenho Psicomotor/fisiologia , Força da Mão/fisiologia , Memória de Longo Prazo , Motivação
3.
PLoS Comput Biol ; 19(11): e1011596, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37917718

RESUMO

Motor errors can have both bias and noise components. Bias can be compensated for by adaptation and, in tasks in which the magnitude of noise varies across the environment, noise can be reduced by identifying and then acting in less noisy regions of the environment. Here we examine how these two processes interact when participants reach under a combination of an externally imposed visuomotor bias and noise. In a center-out reaching task, participants experienced noise (zero-mean random visuomotor rotations) that was target-direction dependent with a standard deviation that increased linearly from a least-noisy direction. They also experienced a constant bias, a visuomotor rotation that varied (across groups) from 0 to 40 degrees. Critically, on each trial, participants could select one of three targets to reach to, thereby allowing them to potentially select targets close to the least-noisy direction. The group who experienced no bias (0 degrees) quickly learned to select targets close to the least-noisy direction. However, groups who experienced a bias often failed to identify the least-noisy direction, even though they did partially adapt to the bias. When noise was introduced after participants experienced and adapted to a 40 degrees bias (without noise) in all directions, they exhibited an improved ability to find the least-noisy direction. We developed two models-one for reach adaptation and one for target selection-that could explain participants' adaptation and target-selection behavior. Our data and simulations indicate that there is a trade-off between adaptation and selection. Specifically, because bias learning is local, participants can improve performance, through adaptation, by always selecting targets that are closest to a chosen direction. However, this comes at the expense of improving performance, through selection, by reaching toward targets in different directions to find the least-noisy direction.


Assuntos
Desempenho Psicomotor , Percepção Visual , Humanos , Aprendizagem , Ruído , Viés , Adaptação Fisiológica , Movimento
4.
Cereb Cortex ; 33(8): 4761-4778, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36245212

RESUMO

Humans vary greatly in their motor learning abilities, yet little is known about the neural processes that underlie this variability. We identified distinct profiles of human sensorimotor adaptation that emerged across 2 days of learning, linking these profiles to the dynamics of whole-brain functional networks early on the first day when cognitive strategies toward sensorimotor adaptation are believed to be most prominent. During early learning, greater recruitment of a network of higher-order brain regions, involving prefrontal and anterior temporal cortex, was associated with faster learning. At the same time, greater integration of this "cognitive network" with a sensorimotor network was associated with slower learning, consistent with the notion that cognitive strategies toward adaptation operate in parallel with implicit learning processes of the sensorimotor system. On the second day, greater recruitment of a network that included the hippocampus was associated with faster learning, consistent with the notion that declarative memory systems are involved with fast relearning of sensorimotor mappings. Together, these findings provide novel evidence for the role of higher-order brain systems in driving variability in adaptation.


Assuntos
Encéfalo , Aprendizagem , Humanos , Adaptação Fisiológica , Lobo Temporal , Hipocampo
5.
J Endocrinol Invest ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460092

RESUMO

BACKGROUND: The organ-specific effects of gender-affirming sex hormone treatment (GAHT) in transgender women (TW) and transgender men (TM) are insufficiently explored. This study investigated the effects of GAHT on adipose tissue function. METHODS: In a single-center interventional prospective study, 32 adults undergoing GAHT, 15 TW and 17 TM, were examined with anthropometry and abdominal subcutaneous adipose tissue biopsies obtained before initiation of treatment, 1 month after endogenous sex hormone inhibition and three and 11 months after initiated GAHT. Fat cell size, basal/stimulated lipolysis and cytokine secretion in adipose tissue were analyzed. RESULTS: TW displayed an increase in complement component 3a and retinol-binding protein 4 (RBP4) secretion after sex hormone inhibition, which returned to baseline following estradiol treatment. No changes in lipolysis were seen in TW. TM showed downregulation of RBP4 after treatment, but no changes in basal lipolysis. In TM, the estrogen suppression led to higher noradrenaline stimulated (NA) lipolysis that was normalized following testosterone treatment. At 11 months, the ratio of NA/basal lipolysis was lower compared to baseline. There were no significant changes in fat cell size in either TW or TM. CONCLUSION: In TW, gonadal hormone suppression results in transient changes in cytokines and in TM there are some changes in NA-stimulated lipolysis following testosterone treatment. However, despite the known metabolic effects of sex hormones, the overall effects of GAHT on adipose tissue function are small and likely have limited clinical relevance, but larger studies with longer follow-up are needed to confirm these findings. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02518009, Retrospectively registered 7 August 2015.

6.
J Neurophysiol ; 129(2): 285-297, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36350057

RESUMO

Weight prediction is critical for dexterous object manipulation. Previous work has focused on lifting objects presented in isolation and has examined how the visual appearance of an object is used to predict its weight. Here we tested the novel hypothesis that when interacting with multiple objects, as is common in everyday tasks, people exploit the locations of objects to directly predict their weights, bypassing slower and more demanding processing of visual properties to predict weight. Using a three-dimensional robotic and virtual reality system, we developed a task in which participants were presented with a set of objects. In each trial a randomly chosen object translated onto the participant's hand and they had to anticipate the object's weight by generating an equivalent upward force. Across conditions we could control whether the visual appearance and/or location of the objects were informative as to their weight. Using this task, and a set of analogous web-based experiments, we show that when location information was predictive of the objects' weights participants used this information to achieve faster prediction than observed when prediction is based on visual appearance. We suggest that by "caching" associations between locations and weights, the sensorimotor system can speed prediction while also lowering working memory demands involved in predicting weight from object visual properties.NEW & NOTEWORTHY We use a novel object support task using a three-dimensional robotic interface and virtual reality system to provide evidence that the locations of objects are used to predict their weights. Using location information, rather than the visual appearance of the objects, supports fast prediction, thereby avoiding processes that can be demanding on working memory.


Assuntos
Desempenho Psicomotor , Percepção de Peso , Humanos , Aprendizagem , Mãos , Cognição
7.
J Neurophysiol ; 129(1): 115-130, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36475897

RESUMO

Real-world search behavior often involves limb movements, either during search or after search. Here we investigated whether movement-related costs influence search behavior in two kinds of search tasks. In our visual search tasks, participants made saccades to find a target object among distractors and then moved a cursor, controlled by the handle of a robotic manipulandum, to the target. In our manual search tasks, participants moved the cursor to perform the search, placing it onto objects to reveal their identity as either a target or a distractor. In all tasks, there were multiple targets. Across experiments, we manipulated either the effort or time costs associated with movement such that these costs varied across the search space. We varied effort by applying different resistive forces to the handle, and we varied time costs by altering the speed of the cursor. Our analysis of cursor and eye movements during manual and visual search, respectively, showed that effort influenced manual search but did not influence visual search. In contrast, time costs influenced both visual and manual search. Our results demonstrate that, in addition to perceptual and cognitive factors, movement-related costs can also influence search behavior.NEW & NOTEWORTHY Numerous studies have investigated the perceptual and cognitive factors that influence decision making about where to look, or move, in search tasks. However, little is known about how search is influenced by movement-related costs associated with acting on an object once it has been visually located or acting during manual search. In this article, we show that movement time costs can bias visual and manual search and that movement effort costs bias manual search.


Assuntos
Movimentos Oculares , Movimento , Humanos , Movimentos Sacádicos , Percepção Visual , Desempenho Psicomotor
8.
Nat Rev Neurosci ; 19(9): 519-534, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30089888

RESUMO

Skilled sensorimotor interactions with the world result from a series of decision-making processes that determine, on the basis of information extracted during the unfolding sequence of events, which movements to make and when and how to make them. Despite this inherent link between decision-making and sensorimotor control, research into each of these two areas has largely evolved in isolation, and it is only fairly recently that researchers have begun investigating how they interact and, together, influence behaviour. Here, we review recent behavioural, neurophysiological and computational research that highlights the role of decision-making processes in the selection, planning and control of goal-directed movements in humans and nonhuman primates.


Assuntos
Encéfalo/fisiologia , Tomada de Decisões/fisiologia , Neurônios/fisiologia , Desempenho Psicomotor , Animais , Objetivos , Humanos , Modelos Neurológicos , Atividade Motora
9.
Cereb Cortex ; 32(16): 3423-3440, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34963128

RESUMO

Error-based and reward-based processes are critical for motor learning and are thought to be mediated via distinct neural pathways. However, recent behavioral work in humans suggests that both learning processes can be bolstered by the use of cognitive strategies, which may mediate individual differences in motor learning ability. It has been speculated that medial temporal lobe regions, which have been shown to support motor sequence learning, also support the use of cognitive strategies in error-based and reinforcement motor learning. However, direct evidence in support of this idea remains sparse. Here we first show that better overall learning during error-based visuomotor adaptation is associated with better overall learning during the reward-based shaping of reaching movements. Given the cognitive contribution to learning in both of these tasks, these results support the notion that strategic processes, associated with better performance, drive intersubject variation in both error-based and reinforcement motor learning. Furthermore, we show that entorhinal cortex volume is larger in better learning individuals-characterized across both motor learning tasks-compared with their poorer learning counterparts. These results suggest that individual differences in learning performance during error and reinforcement learning are related to neuroanatomical differences in entorhinal cortex.


Assuntos
Aprendizagem , Reforço Psicológico , Humanos , Movimento , Vias Neurais , Desempenho Psicomotor , Recompensa
10.
J Vis ; 23(6): 4, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37289172

RESUMO

Real world search tasks often involve action on a target object once it has been located. However, few studies have examined whether movement-related costs associated with acting on located objects influence visual search. Here, using a task in which participants reached to a target object after locating it, we examined whether people take into account obstacles that increase movement-related costs for some regions of the reachable search space but not others. In each trial, a set of 36 objects (4 targets and 32 distractors) were displayed on a vertical screen and participants moved a cursor to a target after locating it. Participants had to fixate on an object to determine whether it was a target or distractor. A rectangular obstacle, of varying length, location, and orientation, was briefly displayed at the start of the trial. Participants controlled the cursor by moving the handle of a robotic manipulandum in a horizontal plane. The handle applied forces to simulate contact between the cursor and the unseen obstacle. We found that search, measured using eye movements, was biased to regions of the search space that could be reached without moving around the obstacle. This result suggests that when deciding where to search, people can incorporate the physical structure of the environment so as to reduce the movement-related cost of subsequently acting on the located target.


Assuntos
Movimentos Oculares , Movimento , Humanos , Desempenho Psicomotor
11.
J Neurosci ; 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34035139

RESUMO

Recent data and motor control theory argues that movement planning involves preparing the neural state of primary motor cortex (M1) for forthcoming action execution. Theories related to internal models, feedback control, and predictive coding also emphasize the importance of sensory prediction (and processing) prior to (and during) the movement itself, explaining why motor-related deficits can arise from damage to primary somatosensory cortex (S1). Motivated by this work, here we examined whether motor planning, in addition to changing the neural state of M1, changes the neural state of S1, preparing it for the sensory feedback that arises during action. We tested this idea in two human functional MRI studies (N=31, 16 female) involving delayed object manipulation tasks, focusing our analysis on pre-movement activity patterns in M1 and S1. We found that the motor effector to be used in the upcoming action could be decoded, well before movement, from neural activity in M1 in both studies. Critically, we found that this effector information was also present, well before movement, in S1. In particular, we found that the encoding of effector information in area 3b (S1 proper) was linked to the contralateral hand, similarly to that found in M1, whereas in areas 1 and 2 this encoding was present in both the contralateral and ipsilateral hemispheres. Together, these findings suggest that motor planning not only prepares the motor system for movement, but also changes the neural state of the somatosensory system, presumably allowing it to anticipate the sensory information received during movement.SIGNIFICANCE STATEMENT:Whereas recent work on motor cortex has emphasized the critical role of movement planning in preparing neural activity for movement generation, it has not investigated the extent to which planning also modulates the activity in adjacent primary somatosensory cortex (S1). This reflects a key gap in knowledge, given that recent motor control theories emphasize the importance of sensory feedback processing in effective movement generation. Here we find, through a convergence of experiments and analyses, that the planning of object manipulation tasks, in addition to modulating the activity in motor cortex, changes the state of neural activity in different subfields of human S1. We suggest that this modulation prepares S1 for the sensory information it will receive during action execution.

12.
Cereb Cortex ; 31(6): 2952-2967, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33511976

RESUMO

It is well established that movement planning recruits motor-related cortical brain areas in preparation for the forthcoming action. Given that an integral component to the control of action is the processing of sensory information throughout movement, we predicted that movement planning might also modulate early sensory cortical areas, readying them for sensory processing during the unfolding action. To test this hypothesis, we performed 2 human functional magnetic resonance imaging studies involving separate delayed movement tasks and focused on premovement neural activity in early auditory cortex, given the area's direct connections to the motor system and evidence that it is modulated by motor cortex during movement in rodents. We show that effector-specific information (i.e., movements of the left vs. right hand in Experiment 1 and movements of the hand vs. eye in Experiment 2) can be decoded, well before movement, from neural activity in early auditory cortex. We find that this motor-related information is encoded in a separate subregion of auditory cortex than sensory-related information and is present even when movements are cued visually instead of auditorily. These findings suggest that action planning, in addition to preparing the motor system for movement, involves selectively modulating primary sensory areas based on the intended action.


Assuntos
Estimulação Acústica/métodos , Antecipação Psicológica/fisiologia , Córtex Auditivo/diagnóstico por imagem , Córtex Auditivo/fisiologia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
13.
BMC Vet Res ; 18(1): 351, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127687

RESUMO

BACKGROUND: In people, the cardiovascular effects of obesity include systemic hypertension, cardiac remodelling and both systolic and diastolic dysfunction, whilst weight reduction can reverse myocardial remodelling and reduce risk of subsequent cardiovascular disease. To date, variable results are reported in studies of the effect of obesity and controlled weight reduction on cardiovascular morphology and function in dogs. This prospective study aimed to assess cardiac function, heart rate variability, cardiac biomarkers and body composition before and after weight reduction in pet dogs with obesity. Twenty-four client-owned dogs referred for weight management due to obesity were recruited. To assess the cardiac effects of obesity, body composition analysis (by dual energy X-ray absorptiometry, DEXA) and cardiovascular assessment (echocardiography, Doppler blood pressure, electrocardiography, cardiac biomarkers) were performed prior to weight management. Twelve dogs completed the study and reached target weight, receiving a further cardiovascular assessment and DEXA. A Wilcoxon-signed rank test was used to compare each variable pre- and post- weight reduction. RESULTS: Median (interquartile range) duration of weight loss was 224 days (124-245 days), percentage weight loss was 23% (18-31%) of starting weight. Median change in body fat mass was -50% (-44% to -55%; P = 0.004), whilst median change in lean mass was -7% (+ 1% to -18%, P = 0.083). Before weight reduction, diastolic dysfunction (evidence of impaired relaxation in all dogs), increased left ventricular wall thickness and mildly elevated systolic blood pressure (14/24 ≥ 160 mmHg, median 165 mmHg (140-183)) were common features in dogs with obesity. However, systolic left ventricular wall dimensions were the only variables that changed after weight reduction, with a decrease in both the systolic interventricular septum (P = 0.029) and systolic left ventricular free wall (P = 0.017). There was no evidence of decreased heart rate variability in dogs with obesity (P = 0.367), and no change in cardiac biomarker concentrations with weight reduction (N-terminal proBNP, P = 0.262; cardiac troponin I P = 0.657). CONCLUSIONS: Canine obesity results in diastolic dysfunction and left ventricular hypertrophy, the latter of which improves with significant weight and fat mass reduction. Further studies are required to clarify the clinical consequences of these findings.


Assuntos
Cardiomiopatias , Doenças do Cão , Obesidade , Animais , Biomarcadores , Cardiomiopatias/prevenção & controle , Cardiomiopatias/veterinária , Doenças do Cão/prevenção & controle , Cães , Obesidade/veterinária , Estudos Prospectivos , Troponina I , Redução de Peso/fisiologia
14.
Antimicrob Agents Chemother ; 65(8): e0061121, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34097494

RESUMO

Antibiotic collateral sensitivity, in which acquired resistance to one drug leads to decreased resistance to a different drug, occurs in Burkholderia multivorans. Here, we observed that treatment of extensively drug-resistant variants evolved from a cystic fibrosis (CF) sputum sample isolate with either meropenem or sulfamethoxazole-trimethoprim, depending on past resistance phenotypes, resulted in increased sensitivity to five different classes of antibiotics. We further identified mutations, including putative resistance-nodulation-division efflux pump regulators and uncharacterized pumps, that may be involved in this phenotype in B. multivorans.


Assuntos
Infecções por Burkholderia , Complexo Burkholderia cepacia , Burkholderia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Burkholderia/genética , Infecções por Burkholderia/tratamento farmacológico , Complexo Burkholderia cepacia/genética , Resistência a Medicamentos , Humanos , Testes de Sensibilidade Microbiana
15.
PLoS Comput Biol ; 16(2): e1007632, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32109940

RESUMO

It is well-established that people can factor into account the distribution of their errors in motor performance so as to optimize reward. Here we asked whether, in the context of motor learning where errors decrease across trials, people take into account their future, improved performance so as to make optimal decisions to maximize reward. One group of participants performed a virtual throwing task in which, periodically, they were given the opportunity to select from a set of smaller targets of increasing value. A second group of participants performed a reaching task under a visuomotor rotation in which, after performing a initial set of trials, they selected a reward structure (ratio of points for target hits and misses) for different exploitation horizons (i.e., numbers of trials they might be asked to perform). Because movement errors decreased exponentially across trials in both learning tasks, optimal target selection (task 1) and optimal reward structure selection (task 2) required taking into account future performance. The results from both tasks indicate that people anticipate their future motor performance so as to make decisions that will improve their expected future reward.


Assuntos
Tomada de Decisões , Aprendizagem , Destreza Motora , Desempenho Psicomotor , Adolescente , Adulto , Feminino , Humanos , Masculino , Modelos Estatísticos , Movimento , Tempo de Reação , Reprodutibilidade dos Testes , Recompensa , Rotação , Estresse Mecânico , Adulto Jovem
16.
J Neurophysiol ; 124(3): 994-1004, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32816611

RESUMO

Skillful manipulation requires forming memories of object dynamics, linking applied force to motion. Although it has been assumed that such memories are linked to objects, a recent study showed that people can form separate memories when these are linked to different controlled points on an object (Heald JB, Ingram JN, Flanagan JR, Wolpert DM. Nat Hum Behav 2: 300-311, 2018). In that study, participants controlled the handle of a robotic device to move a virtual bar with circles (control points) on the left and right sides. Participants were instructed to move either the left or right control point to a target on the left or right, respectively, such that the required movement was constant. When these control points were paired with opposing force fields, adaptation was observed. In this previous study, both the controlled point and the target changed between contexts. To assess which of these factors is critical for learning, here, we used a similar paradigm but with a bar that automatically rotated as it was moved. In the first experiment, the bar rotated, such that the left and right control points moved to a common target. In the second experiment, the bar rotated such that a single control point moved to a target located on either the left or right. In both experiments, participants were able to learn opposing force fields applied in the two contexts. We conclude that separate memories of dynamics can be formed for different "contact goals," involving a unique combination of the controlled point on an object and the target location this point "contacts."NEW & NOTEWORTHY Skilled manipulation requires forming memories of object dynamics, previously assumed to be associated with entire objects. However, we recently demonstrated that people can form multiple motor memories when explicitly instructed to move different locations on an object to different targets. Here, we show that separate motor memories can be learned for different contact goals, which involve a unique combination of a control point and target.


Assuntos
Objetivos , Memória/fisiologia , Atividade Motora/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
17.
Cereb Cortex ; 29(11): 4662-4678, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30668674

RESUMO

The primate visual system contains myriad feedback projections from higher- to lower-order cortical areas, an architecture that has been implicated in the top-down modulation of early visual areas during working memory and attention. Here we tested the hypothesis that these feedback projections also modulate early visual cortical activity during the planning of visually guided actions. We show, across three separate human functional magnetic resonance imaging (fMRI) studies involving object-directed movements, that information related to the motor effector to be used (i.e., limb, eye) and action goal to be performed (i.e., grasp, reach) can be selectively decoded-prior to movement-from the retinotopic representation of the target object(s) in early visual cortex. We also find that during the planning of sequential actions involving objects in two different spatial locations, that motor-related information can be decoded from both locations in retinotopic cortex. Together, these findings indicate that movement planning selectively modulates early visual cortical activity patterns in an effector-specific, target-centric, and task-dependent manner. These findings offer a neural account of how motor-relevant target features are enhanced during action planning and suggest a possible role for early visual cortex in instituting a sensorimotor estimate of the visual consequences of movement.


Assuntos
Intenção , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Córtex Visual/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Atividade Motora/fisiologia , Vias Visuais/fisiologia , Adulto Jovem
18.
Arch Womens Ment Health ; 23(3): 317-329, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31385103

RESUMO

Birth experiences can be traumatic and may give rise to PTSD following childbirth (PTSD-FC). Peripartum neurobiological alterations in the oxytocinergic system are highly relevant for postpartum maternal behavioral and affective adaptions like bonding and lactation but are also implicated in the response to traumatic events. Animal models demonstrated that peripartum stress impairs beneficial maternal postpartum behavior. Early postpartum activation of the oxytocinergic system may, however, reverse these effects and thereby prevent adverse long-term consequences for both mother and infant. In this narrative review, we discuss the impact of trauma and PTSD-FC on normal endogenous oxytocinergic system fluctuations in the peripartum period. We also specifically focus on the potential of exogenous oxytocin (OT) to prevent and treat PTSD-FC. No trials of exogenous OT after traumatic childbirth and PTSD-FC were available. Evidence from non-obstetric PTSD samples and from postpartum healthy or depressed samples implies restorative functional neuroanatomic and psychological effects of exogenous OT such as improved PTSD symptoms and better mother-to-infant bonding, decreased limbic activation, and restored responsiveness in dopaminergic reward regions. Adverse effects of intranasal OT on mood and the increased fear processing and reduced top-down control over amygdala activation in women with acute trauma exposure or postpartum depression, however, warrant cautionary use of intranasal OT. Observational and experimental studies into the role of the endogenous and exogenous oxytocinergic system in PTSD-FC are needed and should explore individual and situational circumstances, including level of acute distress, intrapartum exogenous OT exposure, or history of childhood trauma.


Assuntos
Depressão Pós-Parto/tratamento farmacológico , Ocitocina/metabolismo , Parto/psicologia , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Animais , Parto Obstétrico/psicologia , Feminino , Humanos , Comportamento Materno , Camundongos , Ocitócicos/metabolismo , Ocitócicos/uso terapêutico , Ocitocina/uso terapêutico , Período Periparto/psicologia , Período Pós-Parto/psicologia , Gravidez , Ratos
19.
J Neurophysiol ; 121(4): 1342-1351, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30625003

RESUMO

Skillful manipulation requires forming and recalling memories of the dynamics of objects linking applied force to motion. It has been assumed that such memories are associated with entire objects. However, we often control different locations on an object, and these locations may be associated with different dynamics. We have previously demonstrated that multiple memories can be formed when participants are explicitly instructed to control different visual points marked on an object. A key question is whether this novel finding generalizes to more natural situations in which control points are implicitly defined by the task. To answer this question, we used objects with no explicit control points and tasks designed to encourage the use of distinct implicit control points. Participants moved a handle, attached to a robotic interface, to control the position of a rectangular object ("eraser") in the horizontal plane. Participants were required to move the eraser straight ahead to wipe away a column of dots ("dust"), located to either the left or right. We found that participants adapted to opposing dynamics when linked to the left and right dust locations, even though the movements required for these two contexts were the same. Control conditions showed this learning could not be accounted for by contextual cues or the fact that the task goal required moving in a straight line. These results suggest that people naturally control different locations on manipulated objects depending on the task context and that doing so affords the formation of separate motor memories. NEW & NOTEWORTHY Skilled manipulation requires forming motor memories of object dynamics, which have been assumed to be associated with entire objects. However, we recently demonstrated that people can form multiple memories when explicitly instructed to control different visual points on an object. In this article we show that this novel finding generalizes to more natural situations in which control points are implicitly defined by the task.


Assuntos
Memória , Destreza Motora , Adolescente , Feminino , Generalização Psicológica , Mãos/fisiologia , Humanos , Masculino , Movimento , Análise e Desempenho de Tarefas , Adulto Jovem
20.
Exp Brain Res ; 237(3): 735-741, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30560507

RESUMO

When asked to move their unseen hand-to-visual targets, people exhibit idiosyncratic but reliable visuo-proprioceptive matching errors. Unsurprisingly, vision and proprioception quickly align when these errors are made apparent by providing visual feedback of the position of the hand. However, retention of this learning is limited, such that the original matching errors soon reappear when visual feedback is removed. Several recent motor learning studies have shown that reward feedback can improve retention relative to error feedback. Here, using a visuo-proprioceptive position-matching task, we examined whether binary reward feedback can be effectively exploited to reduce matching errors and, if so, whether this learning leads to improved retention relative to learning based on error feedback. The results show that participants were able to adjust the visuo-proprioceptive mapping with reward feedback, but that the level of retention was similar to that observed when the adjustment was accomplished with error feedback. Therefore, similar to error feedback, reward feedback allows for temporary recalibration, but does not support long-lasting retention of this recalibration.


Assuntos
Retroalimentação Sensorial/fisiologia , Propriocepção/fisiologia , Desempenho Psicomotor/fisiologia , Retenção Psicológica/fisiologia , Recompensa , Percepção Visual/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA