Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 319(1): H123-H132, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32469638

RESUMO

Cold exposure causes cutaneous vasoconstriction via a reflex increase in sympathetic activity and a local effect to augment adrenergic constriction. Local cooling also initiates cutaneous dilatation, which may function to restrain cold-induced constriction. However, the underlying mechanisms and physiological role of cold-induced dilatation have not been defined. Experiments were performed to assess the role of endothelial-derived mediators in this response. In isolated pressurized cutaneous mouse tail arteries, cooling (28°C) did not affect the magnitude of dilatation to acetylcholine in preconstricted arteries. However, inhibition of nitric oxide (NO) [NG-nitro-l-arginine methyl ester (l-NAME)] and prostacyclin (PGI2) (indomethacin) reduced acetylcholine-induced dilatation at 37°C but not at 28°C, suggesting that cooling increased NO/PGI2-independent dilatation. This NO/PGI2-independent dilatation was reduced by inhibition of endothelial SK (UCL1684) and IK (TRAM34) Ca2+-activated K+-channels (KCa), consistent with endothelium-derived hyperpolarization (EDH). Cooling also increased dilatation to direct activation of KCa channels (SKA31, CyPPA) but did not affect dilatation to exogenous NO (DEA-NONOate). This cooling-induced increase in EDH-type dilatations was associated with divergent effects on potential downstream EDH mechanisms: cooling reduced dilatation to K+, which mimics an intercellular K+ cloud, but increased direct communication between endothelial and smooth muscle cells (myoendothelial coupling), assessed by cellular transfer of biocytin. Indeed, inhibition of gap junctions (carbenoxolone) abolished the EDH-type component of dilatation to acetylcholine during cooling but did affect NO-dominated dilatation at 37°C. Cooling also inhibited U46619 constriction that was prevented by inhibition of IK and SK KCa channels or inhibition of gap junctions. The results suggest that cooling dilates cutaneous arteries by increasing myoendothelial communication and amplifying EDH-type dilatation.NEW & NOTEWORTHY Cold causes cutaneous vasoconstriction to restrict heat loss. Although cold also initiates cutaneous dilatation, the mechanisms and role of this dilatation have not been clearly defined. This study demonstrates that cooling increases myoendothelial coupling between smooth muscle and endothelial cells in cutaneous arteries, which is associated with increased endothelium-derived hyperpolarization (EDH)-type dilatation. Dysfunction in this process may contribute to excessive cold-induced constriction and tissue injury.


Assuntos
Artérias/fisiologia , Temperatura Baixa , Endotélio Vascular/fisiologia , Músculo Liso Vascular/fisiologia , Pele/irrigação sanguínea , Vasodilatação , Acetilcolina/farmacologia , Alcanos/farmacologia , Animais , Artérias/efeitos dos fármacos , Carbenoxolona/farmacologia , Endotélio Vascular/metabolismo , Epoprostenol/farmacologia , Indometacina/farmacologia , Masculino , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Pirazóis/farmacologia , Compostos de Quinolínio/farmacologia , Vasoconstrição , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia
2.
Am J Physiol Heart Circ Physiol ; 316(1): H80-H88, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30289292

RESUMO

Homodimer formation is essential for the normal activity of endothelial nitric oxide synthase (eNOS). Structural uncoupling of eNOS, with generation of enzyme monomers, is thought to contribute to endothelial dysfunction in several vascular disorders, including aging. However, low-temperature SDS-PAGE of healthy arteries has revealed considerable variation between studies in the relative expression of eNOS dimers and monomers. While assessing structural uncoupling of eNOS in aging arteries, we identified methodological pitfalls that might contribute to such variation. Therefore, using human cultured aortic endothelial cells and aortas from young and aged Fischer-344 rats, we investigated optimal approaches for analyzing the expression of eNOS monomers and dimers. The results demonstrated that published differences in treatment of cell lysates can significantly impact the relative expression of several eNOS species, including denatured monomers, partially folded monomers, dimers, and higher-order oligomers. In aortas, experiments initially confirmed a large increase in eNOS monomers in aging arteries, consistent with structural uncoupling. However, these monomers were actually endogenous IgG, which, under these conditions, has mobility similar to eNOS monomers. Increased IgG levels in aged aortas likely reflect the aging-induced disruption of endothelial junctions and increased arterial penetration of IgG. After removal of the IgG signal, there were low levels of eNOS monomers in young arteries, which were not significantly different in aged arteries. Therefore, structural uncoupling of eNOS is not a prominent feature in young healthy arteries, and the process is not increased by aging. The study also identifies optimal approaches to analyze eNOS dimers and monomers. NEW & NOTEWORTHY Structural uncoupling of endothelial nitric oxide synthase (eNOS) is considered central to endothelial dysfunction. However, reported levels of eNOS dimers and monomers vary widely, even in healthy arteries. We demonstrate that sample processing can alter relative levels of eNOS species. Moreover, endothelial dysfunction in aging aortas results in IgG accumulation, which, because of similar mobility to eNOS monomers, could be misinterpreted as structural uncoupling. Indeed, enzyme monomerization is not prominent in young or aging arteries.


Assuntos
Envelhecimento/metabolismo , Artérias/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Multimerização Proteica , Animais , Artérias/crescimento & desenvolvimento , Artefatos , Células Cultivadas , Endotélio Vascular/crescimento & desenvolvimento , Endotélio Vascular/metabolismo , Humanos , Immunoblotting/normas , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico Sintase Tipo III/genética , Dobramento de Proteína , Ratos , Ratos Endogâmicos F344
3.
Am J Physiol Heart Circ Physiol ; 314(4): H805-H811, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351453

RESUMO

Endothelium-dependent, nitric oxide-mediated dilatation is impaired in aging arteries. The dysfunction reflects increased production of reactive oxygen species (ROS), is reversed by inhibiting superoxide with superoxide dismutase (SOD) mimics, and is assumed to reflect superoxide-mediated inactivation of nitric oxide. However, the dysfunction also reflects Src-dependent degradation and loss of vascular-endothelial (VE)-cadherin from adherens junctions, resulting in a selective impairment in the ability of the junctions to amplify endothelial dilatation. Experiments therefore tested the hypothesis that SOD mimics might restore endothelial dilation in aging arteries by inhibiting Src and protecting endothelial adherens junctions. Tail arteries from young and aging Fisher 344 rats were processed for functional (pressure myograph), biochemical (immunoblot), and morphological (immunofluorescence) analyses. Cell-permeable SOD mimics [manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP) or tempol] did not affect acetylcholine-induced dilatation in young arteries but increased responses and restored normal dilator function in aging arteries. In aging arteries, MnTMPyP decreased Src activity (immunoblots of Tyr416 phosphorylated compared with total Src), increased the intensity and width of VE-cadherin staining at endothelial junctions, and increased VE-cadherin levels in Triton X-100-insoluble lysates, which represents the junctional protein. Because of aging-induced junctional disruption, inhibiting VE-cadherin clustering at adherens junctions with a function-blocking antibody does not affect acetylcholine-induced dilatation in aging arteries. However, the antibody prevented SOD mimics from restoring acetylcholine-induced dilatation in aging arteries. Therefore, SOD mimics improve impaired adherens junctions in aging endothelium, which is essential for SOD mimics to restore endothelium-dependent dilatation in aging arteries. The results suggest an important new pathological role for ROS in aging endothelium, namely, disruption of adherens junctions. NEW & NOTEWORTHY Aging-induced endothelial dysfunction is reversed by SOD mimics. This study demonstrates that they improve impaired adherens junctions in aging endothelium and that their restoration of endothelial dilatation is dependent on increased junctional activity. The results suggest a novel role for oxygen radicals in vascular aging, namely, disruption of adherens junctions.


Assuntos
Junções Aderentes/efeitos dos fármacos , Antioxidantes/farmacologia , Óxidos N-Cíclicos/farmacologia , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Metaloporfirinas/farmacologia , Superóxidos/antagonistas & inibidores , Cauda/irrigação sanguínea , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Junções Aderentes/metabolismo , Fatores Etários , Envelhecimento , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Fosforilação , Ratos Endogâmicos F344 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Marcadores de Spin , Superóxidos/metabolismo , Quinases da Família src/metabolismo
4.
J Physiol ; 595(15): 5143-5158, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28561330

RESUMO

KEY POINTS: Ageing-induced endothelial dysfunction contributes to organ dysfunction and progression of cardiovascular disease. VE-cadherin clustering at adherens junctions promotes protective endothelial functions, including endothelium-dependent dilatation. Ageing increased internalization and degradation of VE-cadherin, resulting in impaired activity of adherens junctions. Inhibition of VE-cadherin clustering at adherens junctions (function-blocking antibody; FBA) reduced endothelial dilatation in young arteries but did not affect the already impaired dilatation in old arteries. After junctional disruption with the FBA, dilatation was similar in young and old arteries. Src tyrosine kinase activity and tyrosine phosphorylation of VE-cadherin were increased in old arteries. Src inhibition increased VE-cadherin at adherens junctions and increased endothelial dilatation in old, but not young, arteries. Src inhibition did not increase dilatation in old arteries treated with the VE-cadherin FBA. Ageing impairs the activity of adherens junctions, which contributes to endothelial dilator dysfunction. Restoring the activity of adherens junctions could be of therapeutic benefit in vascular ageing. ABSTRACT: Endothelial dilator dysfunction contributes to pathological vascular ageing. Experiments assessed whether altered activity of endothelial adherens junctions (AJs) might contribute to this dysfunction. Aortas and tail arteries were isolated from young (3-4 months) and old (22-24 months) F344 rats. VE-cadherin immunofluorescent staining at endothelial AJs and AJ width were reduced in old compared to young arteries. A 140 kDa VE-cadherin species was present on the cell surface and in TTX-insoluble fractions, consistent with junctional localization. Levels of the 140 kDa VE-cadherin were decreased, whereas levels of a TTX-soluble 115 kDa VE-cadherin species were increased in old compared to young arteries. Acetylcholine caused endothelium-dependent dilatation that was decreased in old compared to young arteries. Disruption of VE-cadherin clustering at AJs (function-blocking antibody, FBA) inhibited dilatation to acetylcholine in young, but not old, arteries. After the FBA, there was no longer any difference in dilatation between old and young arteries. Src activity and tyrosine phosphorylation of VE-cadherin were increased in old compared to young arteries. In old arteries, Src inhibition (saracatinib) increased: (i) 140 kDa VE-cadherin in the TTX-insoluble fraction, (ii) VE-cadherin intensity at AJs, (iii) AJ width, and (iv) acetylcholine dilatation. In old arteries treated with the FBA, saracatinib no longer increased acetylcholine dilatation. Saracatinib did not affect dilatation in young arteries. Therefore, ageing impairs AJ activity, which appears to reflect Src-induced phosphorylation, internalization and degradation of VE-cadherin. Moreover, impaired AJ activity can account for the endothelial dilator dysfunction in old arteries. Restoring endothelial AJ activity may be a novel therapeutic approach to vascular ageing.


Assuntos
Junções Aderentes/fisiologia , Envelhecimento/fisiologia , Artérias/fisiologia , Acetilcolina/farmacologia , Junções Aderentes/efeitos dos fármacos , Animais , Antígenos CD/fisiologia , Artérias/efeitos dos fármacos , Benzodioxóis/farmacologia , Caderinas/fisiologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Masculino , Fosforilação , Quinazolinas/farmacologia , Ratos Endogâmicos F344 , Tirosina/fisiologia , Vasodilatadores/farmacologia , Quinases da Família src/antagonistas & inibidores
5.
Physiol Genomics ; 48(11): 826-834, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664183

RESUMO

Short chain fatty acid (SCFA) metabolites are byproducts of gut microbial metabolism that are known to affect host physiology via host G protein-coupled receptor (GPCRs). We previously showed that an acute SCFA bolus decreases blood pressure (BP) in anesthetized mice, an effect mediated primarily via Gpr41. In this study, our aims were to identify the cellular localization of Gpr41 and to determine its role in BP regulation. We localized Gpr41 to the vascular endothelium using RT-PCR: Gpr41 is detected in intact vessels (with endothelium) but is absent from denuded vessels (without endothelium). Furthermore, using pressure myography we confirmed that SCFAs dilate resistance vessels in an endothelium-dependent manner. Since we previously found that Gpr41 mediates a hypotensive response to acute SCFA administration, we hypothesized that Gpr41 knockout (KO) mice would be hypertensive. Here, we report that Gpr41 KO mice have isolated systolic hypertension compared with wild-type (WT) mice; diastolic BP was not different between WT and KO. Older Gpr41 KO mice also exhibited elevated pulse wave velocity, consistent with a phenotype of systolic hypertension; however, there was no increase in ex vivo aorta stiffness (measured by mechanical tensile testing). Plasma renin concentrations were also similar in KO and WT mice. The systolic hypertension in Gpr41 KO is not salt sensitive, as it is not significantly altered on either a high- or low-salt diet. In sum, these studies suggest that endothelial Gpr41 lowers baseline BP, likely by decreasing active vascular tone without altering passive characteristics of the blood vessels, and that Gpr41 KO mice have hypertension of a vascular origin.


Assuntos
Bactérias/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Endotélio Vascular/metabolismo , Ácidos Graxos Voláteis/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Feminino , Hipertensão/sangue , Hipertensão/fisiopatologia , Masculino , Metaboloma/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Renina/sangue , Cloreto de Sódio na Dieta/efeitos adversos , Sus scrofa , Sístole/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
6.
J Physiol ; 594(17): 4933-44, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27062279

RESUMO

KEY POINTS: Endothelial expression and the release of endothelin-1 (ET-1) in levels sufficient to initiate vasoconstriction is considered to be a hallmark feature of pathological endothelial dysfunction. During the immediate postnatal period, arterial endothelial cells undergo remarkable structural and functional changes as they transition to a mature protective cell layer, which includes a marked increase in NO dilator activity. The present study demonstrates that endothelial cells lining newborn central arteries express high levels of ET-1 peptides and, in response to endothelial stimulation, rapidly release ET-1 and initiate powerful ET-1-mediated constriction. This activity is lost as the endothelium matures in the postnatal period. Heightened activity of ET-1 in the neonatal endothelium might contribute to inappropriate responses of immature arteries to stress or injury. Indeed, the immature endothelium resembles dysfunctional endothelial cells, and retention or re-emergence of this phenotype may contribute to the development of vascular disease. ABSTRACT: Endothelial cells lining fetal and newborn arteries have an unusual phenotype, including reduced NO activity, prominent actin stress fibres and poorly developed cellular junctions. Experiments were performed to determine whether the immature endothelium of newborn arteries also expresses and releases endothelin-1 (ET-1) and initiates endothelium-dependent constriction. Carotid arteries were isolated from newborn (postnatal day 1; P1), postnatal day 7 (P7) and postnatal day 21 (P21) mice and assessed in a pressure myograph system. Endothelial stimulation with A23187 or thrombin caused constriction in P1 arteries, no significant change in diameter of P7 arteries, and dilatation in P21 arteries. In P1 arteries, constriction to thrombin or A23187 was inhibited by endothelial-denudation, by ET-1 receptor antagonists (BQ123 plus BQ788) or by inhibition of endothelin-converting enzyme (phosphoramidon or SM19712). ET-1 receptor antagonism did not affect responses to thrombin or A23187 in more mature arteries. Exogenous ET-1 caused similar concentration-dependent constrictions of P1, P7 and P21 arteries. Endothelial stimulation with thrombin rapidly increased the endothelial release of ET-1 from P1 but not P21 aortas. Endothelial expression of ET-1 peptides, as assessed by immunofluorescence analysis, was increased in P1 compared to P21 arteries. Therefore, newborn endothelial cells express high levels of ET-1 peptides, rapidly release ET-1 in response to endothelial stimulation, and initiate ET-1-mediated endothelium-dependent constriction. This activity is diminished as the endothelium matures in the immediate postnatal period. Heightened activity of ET-1 in neonatal endothelium probably reflects an early developmental role of the peptide, although this might contribute to inappropriate responses of immature arteries to stress or injury.


Assuntos
Artérias Carótidas/fisiologia , Células Endoteliais/fisiologia , Endotelina-1/fisiologia , Animais , Animais Recém-Nascidos , Artérias Carótidas/efeitos dos fármacos , Antagonistas do Receptor de Endotelina A/farmacologia , Antagonistas do Receptor de Endotelina B/farmacologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Oligopeptídeos/farmacologia , Peptídeos Cíclicos/farmacologia , Piperidinas/farmacologia , Vasoconstrição/efeitos dos fármacos
7.
Am J Physiol Heart Circ Physiol ; 311(3): H849-54, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27422988

RESUMO

Aging impairs endothelium-dependent NO-mediated dilatation, which results from increased production of reactive oxygen species (ROS). The local generation of angiotensin II (ANG II) is increased in aging arteries and contributes to inflammatory and fibrotic activity of smooth muscle cells and arterial wall remodeling. Although prolonged in vivo ANG II inhibition improves the impaired endothelial dilatation of aging arteries, it is unclear whether this reflects inhibition of intravascular or systemic ANG II systems. Experiments were therefore performed on isolated tail arteries from young (3-4 mo) and old (22-24 mo) F344 rats to determine if a local renin-angiotensin system contributes to the endothelial dilator dysfunction of aging. Aging impaired dilatation to the endothelial agonist acetylcholine but did not influence responses to a nitric oxide (NO) donor (DEA NONOate). Dilatation to acetylcholine was greatly reduced by NO synthase inhibition [nitro-l-arginine methyl ester (l-NAME)] in young and old arteries. In isolated arteries, acute inhibition of angiotensin-converting enzyme (ACE) (perindoprilat), renin (aliskiren), or AT1 receptors (valsartan, losartan) did not influence dilatation to acetylcholine in young arteries but increased responses in old arteries. After ANG II inhibition, the dilator response to acetylcholine was similar in young and old arteries. ROS activity, which was increased in endothelium of aging arteries, was also reduced by inhibiting ANG II (perindoprilat, losartan). Renin expression was increased by 5.6 fold and immunofluorescent levels of ANG II were confirmed to be increased in aging compared with young arteries. Exogenous ANG II inhibited acetylcholine-induced dilatation. Therefore, aging-induced impairment of endothelium-dependent dilatation in aging is caused by a local intravascular renin-angiotensin system.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Envelhecimento , Anti-Hipertensivos/farmacologia , Artérias/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Amidas/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Artérias/fisiopatologia , Endotélio Vascular/fisiopatologia , Fumaratos/farmacologia , Indóis/farmacologia , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Fenilefrina/farmacologia , Ratos , Ratos Endogâmicos F344 , Renina/antagonistas & inibidores , Sistema Renina-Angiotensina/fisiologia , Valsartana/farmacologia , Vasodilatação/fisiologia
8.
Am J Physiol Heart Circ Physiol ; 308(4): H358-63, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25485905

RESUMO

Experiments were performed to determine whether or not acute exposure to elevated pressure would disrupt endothelium-dependent dilatation by increasing local angiotensin II (ANG II) signaling. Vasomotor responses of mouse-isolated carotid arteries were analyzed in a pressure myograph at a control transmural pressure (PTM) of 80 mmHg. Acetylcholine-induced dilatation was reduced by endothelial denudation or by inhibition of nitric oxide synthase (NG-nitro-L-arginine methyl ester, 100 µM). Transient exposure to elevated PTM (150 mmHg, 180 min) inhibited dilatation to acetylcholine but did not affect responses to the nitric oxide donor diethylamine NONOate. Elevated PTM also increased endothelial reactive oxygen species, and the pressure-induced endothelial dysfunction was prevented by the direct antioxidant and NADPH oxidase inhibitor apocynin (100 µM). The increase in endothelial reactive oxygen species in response to elevated PTM was reduced by the ANG II type 1 receptor (AT1R) antagonists losartan (3 µM) or valsartan (1 µM). Indeed, elevated PTM caused marked expression of angiotensinogen, the precursor of ANG II. Inhibition of ANG II signaling, by blocking angiotensin-converting enzyme (1 µM perindoprilat or 10 µM captopril) or blocking AT1Rs prevented the impaired response to acetylcholine in arteries exposed to 150 mmHg but did not affect dilatation to the muscarinic agonist in arteries maintained at 80 mmHg. After the inhibition of ANG II, elevated pressure no longer impaired endothelial dilatation. In arteries treated with perindoprilat to inhibit endogenous formation of the peptide, exogenous ANG II (0.3 µM, 180 min) inhibited dilatation to acetylcholine. Therefore, elevated pressure rapidly impairs endothelium-dependent dilatation by causing ANG expression and enabling ANG II-dependent activation of AT1Rs. These processes may contribute to the pathogenesis of hypertension-induced vascular dysfunction and organ injury.


Assuntos
Angiotensina II/metabolismo , Pressão Sanguínea , Endotélio Vascular/metabolismo , Hipertensão/metabolismo , Transdução de Sinais , Acetilcolina/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Captopril/farmacologia , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/metabolismo , Artérias Carótidas/fisiopatologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Hidrazinas/farmacologia , Hipertensão/fisiopatologia , Indóis/farmacologia , Losartan/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Tetrazóis/farmacologia , Valina/análogos & derivados , Valina/farmacologia , Valsartana , Vasodilatação
9.
Am J Physiol Heart Circ Physiol ; 307(4): H628-32, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24951756

RESUMO

Endothelium of fetal or newborn arteries is atypical, displaying actin stress fibers and reduced nitric oxide (NO)-mediated dilatation. This study tested the hypothesis that Rho/Rho kinase signaling, which promotes endothelial stress fibers and inhibits endothelial dilatation, contributed to this phenotype. Carotid arteries were isolated from newborn [postnatal day 1 (P1)], P7, and P21 mice. Endothelial dilatation to acetylcholine (pressure myograph) was minimal at P1, increased at P7, and further increased at P21. Inhibition of Rho (C3 transferase) or Rho kinase (Y27632, fasudil) significantly increased dilatation to acetylcholine in P1 arteries but had no effect in P7 or P21 arteries. After inhibition of NO synthase (N(G)-nitro-l-arginine methyl ester), Rho kinase inhibition no longer increased acetylcholine responses in P1 arteries. Rho kinase inhibition did not affect dilatation to the NO donor DEA-NONOate. The endothelial actin cytoskeleton was labeled with phalloidin and visualized by laser-scanning microscopy. In P1 arteries, the endothelium had prominent transcytoplasmic stress fibers, whereas in P7 and P21 arteries, the actin fibers had a significantly reduced intensity and were restricted to cell borders. Phosphorylation of myosin light chains, a Rho kinase substrate, was highest in P1 endothelium and significantly reduced in P7 and P21 endothelium (laser-scanning microscopy). In P1 arteries, inhibition of Rho (C3 transferase) or Rho kinase (Y27632) significantly reduced the intensity of actin fibers, which were restricted to cell borders. Similarly, in P1 arteries, Rho inhibition significantly reduced endothelial levels of phosphorylated myosin light chains. These results indicate that the atypical function and morphology of newborn endothelium is mediated by Rho/Rho kinase signaling.


Assuntos
Artérias Carótidas/metabolismo , Endotélio Vascular/metabolismo , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Acetilcolina/farmacologia , Actinas/metabolismo , Animais , Artérias Carótidas/crescimento & desenvolvimento , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cadeias Leves de Miosina/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Doadores de Óxido Nítrico/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinases Associadas a rho/antagonistas & inibidores
10.
Am J Physiol Heart Circ Physiol ; 305(3): H321-9, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23709593

RESUMO

Experiments investigated maturation of endothelial function in the postnatal period. Carotid arteries isolated from newborn (postnatal day 1, P1) to P21 mice were assessed in myographs at transmural pressure (PTM) of 20 mmHg (P1 blood pressure, BP). Acetylcholine was ineffective in P1 but powerfully dilated P7 arteries, whereas NO-donor DEA-NONOate caused similar dilation at P1 and P7. Dilation to acetylcholine at P7 was abolished by inhibition of NO synthase (NOS) (l-NAME) or of phosphoinositide-3-kinase (PI3K) (wortmannin, LY294002). Endothelial NOS (eNOS) expression decreased in P7 compared with P1 arteries, although acetylcholine increased PO4-eNOS-Ser(1177) in P7 but not in P1 arteries. Endothelial maturation may therefore reflect increased signaling through PI3K, Akt, and eNOS. Systemic BP increases dramatically in the early postnatal period. After exposing P1 arteries to transient increased PTM (50 mmHg, 60 min), acetylcholine caused powerful dilation and increased PO4-eNOS-Ser(1177). Pressure-induced rescue of acetylcholine dilation was abolished by PI3K or NOS inhibition. Transient increased PTM did not affect dilation at P7, or dilation to NO-donor in P1 arteries. Width of endothelial adherens junctions (VE-cadherin immunofluorescence) increased significantly from P1 to P7, and in P1 arteries exposed to transient increased PTM. A function-blocking antibody to VE-cadherin reduced the pressure-induced rescue of acetylcholine responses at P1, and the dilation to acetylcholine in P7 arteries. Therefore, maturation of newborn endothelium dilator function may be induced by increasing BP in the postnatal period. Furthermore, this may be mediated by VE-cadherin signaling at adherens junctions. Interruption of this maturation pathway may contribute to developmental and adult vascular diseases.


Assuntos
Pressão Arterial , Artérias Carótidas/fisiologia , Células Endoteliais/fisiologia , Mecanotransdução Celular , Vasodilatação , Junções Aderentes/metabolismo , Animais , Animais Recém-Nascidos , Antígenos CD/metabolismo , Pressão Arterial/efeitos dos fármacos , Caderinas/metabolismo , Artérias Carótidas/citologia , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/metabolismo , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Masculino , Mecanotransdução Celular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia de Vídeo , Miografia , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/metabolismo , Fenótipo , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Serina , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
11.
Physiol Rep ; 11(22): e15884, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38010199

RESUMO

Cooling causes cutaneous dilatation to restrain cold-induced constriction and prevent tissue injury. Cooling increases communication through myoendothelial gap junctions (MEGJs), thereby increasing endothelium-derived hyperpolarization (EDH)-type dilatation. EDH is initiated by calcium-activated potassium channels (KCa ) activated by endothelial stimuli or muscle-derived mediators traversing MEGJs (myoendothelial feedback). The goal of this study was to determine the individual roles of KCa with small (SK3) and intermediate (IK1) conductance in cooling-induced dilatation. Vasomotor responses of mice isolated cutaneous tail arteries were analyzed by pressure myography at 37°C and 28°C. Cooling increased acetylcholine-induced EDH-type dilatation during inhibition of NO and prostacyclin production. IK1 inhibition did not affect dilatations to acetylcholine, whereas SK3 inhibition inhibited dilatation at both temperatures. Cooling uncovered myoendothelial feedback to inhibit constrictions in U46619. IK1 inhibition did not affect U46619 constrictions, whereas SK3 inhibition abolished the inhibitory effect of cooling without affecting U46619 constriction at 37°C. Immunoblots confirmed SK3 expression, which was localized (immunofluorescence) to holes in the internal elastic lamina consistent with myoendothelial projections. Immunoblots and Immunofluorescence did not detect IK1. Studies in non-cutaneous arteries have highlighted the predominant role of IK1 in EDH-type dilatation. Cutaneous arteries are distinctly reliant on SK3, which may enable EDH-type dilation to be amplified by cooling.


Assuntos
Acetilcolina , Vasodilatação , Camundongos , Masculino , Animais , Vasodilatação/fisiologia , Acetilcolina/farmacologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária , Cauda/metabolismo , Artérias/metabolismo , Endotélio Vascular/metabolismo , Artérias Mesentéricas/metabolismo
12.
Circ Res ; 107(2): 242-51, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20522806

RESUMO

RATIONALE: Circulating levels of endothelin (ET)-1 and endogenous ET(A)-mediated constriction are increased in human aging. The mechanisms responsible are not known. OBJECTIVE: Investigate the storage, release, and activity of ET-1 system in arteries from young and aged Fischer-344 rats. METHODS AND RESULTS: After NO synthase inhibition (L-NAME), thrombin contracted aged arteries, which was inhibited by endothelial denudation, ET(A) receptor antagonism (BQ123), and ECE inhibition (phosphoramidon, SM19712) or by inhibiting exocytosis (TAT-NSF, N-ethylmaleimide-sensitive factor inhibitor). Thrombin did not cause endothelium-dependent contraction of young arteries. In aged but not young arteries, thrombin rapidly increased ET-1 release, which was abolished by endothelium denudation or TAT-NSF. L-NAME did not affect ET-1 release. ET-1 immunofluorescent staining was punctate and distinct from von Willebrand factor (VWF). VWF and ET-1 immunofluorescent intensity was similar in young and aged quiescent arteries. Thrombin rapidly increased ET-1 staining and decreased VWF staining in aged but had no effect in young aortas. After L-NAME, thrombin decreased VWF staining in young aortas. NO donor DEA-NONOate (1 to 100 nmol/L) reversed thrombin-induced exocytosis in young (VWF) but not aged L-NAME-treated aortas (VWF, ET-1). Expression of preproET-1 mRNA and ECE-1 mRNA were increased in aged compared to young endothelium. BigET-1 levels and contraction to exogenous BigET-1 (but not ET-1) were also increased in aged compared to young arteries. CONCLUSIONS: The stimulated exocytotic release of ET-1 is dramatically increased in aged endothelium. This reflects increased reactivity of exocytosis, increased expression and storage of ET-1 precursor peptides, and increased expression of ECE-1. Altered endothelial exocytosis of ET-1 and other mediators may contribute to cardiovascular pathology in aging.


Assuntos
Aorta Torácica/metabolismo , Endotelina-1/metabolismo , Exocitose , Artérias Mesentéricas/metabolismo , Vasoconstrição , Fatores Etários , Envelhecimento , Animais , Aorta Torácica/efeitos dos fármacos , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Relação Dose-Resposta a Droga , Antagonistas do Receptor de Endotelina A , Endotelina-1/genética , Enzimas Conversoras de Endotelina , Inibidores Enzimáticos/farmacologia , Exocitose/efeitos dos fármacos , Imunofluorescência , Glicopeptídeos/farmacologia , Hidrazinas/farmacologia , Técnicas In Vitro , Artérias Mesentéricas/efeitos dos fármacos , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/metabolismo , Proteínas Sensíveis a N-Etilmaleimida/antagonistas & inibidores , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Peptídeos Cíclicos/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos F344 , Receptor de Endotelina A/metabolismo , Sulfonamidas/farmacologia , Compostos de Sulfonilureia/farmacologia , Trombina/metabolismo , Regulação para Cima , Vasoconstrição/efeitos dos fármacos , Fator de von Willebrand/metabolismo
13.
Am J Physiol Heart Circ Physiol ; 300(5): H1770-80, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21169401

RESUMO

Mice deficient in Notch3 have defects in arterial vascular smooth muscle cell (VSMC) mechanosensitivity, including impaired myogenic responses and autoregulation, and inappropriate VMSC orientation. Experiments were performed to determine if Notch3 is activated by mechanical stimulation and contributes to mechanosensitive responses of VSMCs, including cell realignment. Cyclic, uniaxial stretch (10%, 1 Hz) of human VSMCs caused Notch3 activation, demonstrated by a stretch-induced increase in hairy and enhancer of split 1/hairy-related transcription factor-1 expression, translocation of Notch3 to the nucleus, and a decrease in the Notch3 extracellular domain. These effects were prevented by inhibiting the expression [small interfering (si)RNA] or proteolytic activation of Notch3 {N-(R)-[2-(hydroxyaminocarbonyl)methyl]-4-methylpentanoyl-l-naphthylalanyl-l-alanine-2-aminoethyl amide (TAPI-1; 50 µmol/l) to inhibit TNF-α-converting enzyme (TACE) or N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester (DAPT; 20 µmol/l) to inhibit γ-secretase}. Stretch increased the activity of ROS within VSMCs, determined using dichlorodihydrofluorescein fluorescence. Catalase (1,200 U/ml), which degrades H2O2, inhibited the stretch-induced activation of Notch3, whereas in nonstretched cells, increasing H2O2 activity [H2O2 or manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin] caused activation of Notch3. Stretch increased the activity of TACE, which was prevented by catalase. Stretch-induced activation of p38 MAPK in VSMCs was inhibited either by catalase or by inhibiting Notch3 expression (siRNA). Stretch caused VSMCs to realign perpendicular to the direction of the mechanical stimulus, which was significantly inhibited by catalase or by inhibiting the expression (siRNA) or activation of Notch3 (TAPI-1 or DAPT). Therefore, cyclic uniaxial stretch activates Notch3 signaling through a ROS-mediated mechanism, and the presence of Notch3 is necessary for proper stretch-induced cell alignment in VSMCs. This mechanism may contribute to the physiological role of Notch3 in mediating developmental maturation of VSMCs.


Assuntos
Aorta/citologia , Comunicação Celular/fisiologia , Músculo Liso Vascular/citologia , Receptores Notch/metabolismo , Estresse Mecânico , Proteínas ADAM/metabolismo , Proteína ADAM17 , Aorta/efeitos dos fármacos , Aorta/metabolismo , Comunicação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Peróxido de Hidrogênio/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Oxirredução , RNA Interferente Pequeno/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptor Notch3 , Receptores Notch/antagonistas & inibidores , Receptores Notch/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
J Pharmacol Exp Ther ; 328(1): 223-30, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18955588

RESUMO

Occupational exposure to hand-operated vibrating tools causes a spectrum of pathological changes in the vascular, neurological, and musculoskeletal systems described as the hand-arm vibration syndrome (HAVS). Experiments were performed to determine the effects of acute vibration on the function of digital arteries. Rats paws were exposed to a vibrating platform (4 h, 125 Hz, constant acceleration of 49 m/s(2) root mean squared), and digital artery function was assessed subsequently in vitro using a pressure myograph system. Constriction to phenylephrine or 5-hydroxytryptamine was reduced in digital arteries from vibrated paws. However, after endothelium denudation, constriction to the agonists was no longer impaired in vibrated arteries. Inhibition of nitric-oxide synthase (NOS) with N(omega)-nitro-l-arginine methyl ester (l-NAME) increased constriction to phenylephrine or 5-hydroxytryptamine in vibrated but not control arteries and abolished the vibration-induced depression in constrictor responses. However, nitric oxide (NO) activity, determined using the NO-sensitive probe 4-amino-5-methylamino-2', 7'-difluorofluorescein, was reduced in vibrated compared with control arteries. Endogenous levels of reactive oxygen species (ROS), determined using the ROS-sensitive probe 5-(and 6)-chloromethyl-2',7'-dichlorodihydro-fluorescein, were increased in vibrated compared with control arteries. The increased ROS levels were abolished by L-NAME or by catalase, which degrades extracellular hydrogen peroxide. Catalase also increased constriction to phenylephrine or 5-hydroxytryptamine in vibrated but not control arteries and abolished the vibration-induced depression in constrictor responses. The results suggest that acute vibration causes vascular dysfunction in digital arteries by increasing ROS levels, which is probably mediated by uncoupling of endothelial NOS. Therefore, therapeutic strategies to inhibit ROS or augment NO activity may be beneficial in HAVS.


Assuntos
Síndrome da Vibração do Segmento Mão-Braço/fisiopatologia , Fenilefrina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Serotonina/uso terapêutico , Vibração/efeitos adversos , Animais , Artérias/efeitos dos fármacos , Artérias/fisiopatologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Endotélio Vascular/fisiopatologia , Dedos/irrigação sanguínea , Síndrome da Vibração do Segmento Mão-Braço/prevenção & controle , Humanos , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Ratos , Ratos Sprague-Dawley , Restrição Física , Vasoconstrição/efeitos dos fármacos
15.
Rheum Dis Clin North Am ; 29(2): 275-91, vi, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12841295

RESUMO

The scleroderma (SSc) disease process involves dramatic dysfunction in acute and chronic vascular regulatory mechanisms; it presents initially with heightened vasoconstrictor or vasospastic activity and progresses to structural derangement or vasculopathy of the microcirculation. This article discusses the regulatory mechanisms that contribute to this dysfunction and the vascular changes in the context of the other aspects of the SSc disease process in a novel attempt to integrate the individual pathologies of the disease process.


Assuntos
Doença de Raynaud/patologia , Escleroderma Sistêmico/patologia , Doenças Vasculares/patologia , Humanos , Doença de Raynaud/etiologia , Doença de Raynaud/fisiopatologia , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/fisiopatologia , Pele/irrigação sanguínea , Pele/patologia , Pele/fisiopatologia , Doenças Vasculares/etiologia , Doenças Vasculares/fisiopatologia
16.
Am J Physiol Heart Circ Physiol ; 288(2): H660-9, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15388507

RESUMO

Experiments were performed to determine whether remodeling of the actin cytoskeleton contributes to arteriolar constriction. Mouse tail arterioles were mounted on cannulae in a myograph and superfused with buffer solution. The alpha1-adrenergic agonist phenylephrine (0.1-1 micromol/l) caused constriction that was unaffected by cytochalasin D (300 nmol/l) or latrunculin A (100 nmol/l), inhibitors of actin polymerization. In contrast, each compound abolished the mechanosensitive constriction (myogenic response) evoked by elevation in transmural pressure (PTM; 10-60 or 90 mmHg). Arterioles were fixed, permeabilized, and stained with Alexa-568 phalloidin and Alexa-488 DNAse I to visualize F-actin and G-actin, respectively, using a Zeiss 510 laser scanning microscope. Elevation in PTM, but not phenylephrine (1 micromol/l), significantly increased the intensity of F-actin and significantly decreased the intensity of G-actin staining in arteriolar vascular smooth muscle cells (VSMCs). The increase in F-actin staining caused by an elevation in PTM was inhibited by cytochalasin D. In VSMCs at 10 mmHg, prominent F-actin staining was restricted to the cell periphery, whereas after elevation in PTM, transcytoplasmic F-actin fibers were localized through the cell interior, running parallel to the long axis of the cells. Phenylephrine (1 micromol/l) did not alter the architecture of the actin cytoskeleton. In contrast to VSMCs, the actin cytoskeleton of endothelial or adventitial cells was not altered by an elevation in PTM. Therefore, the actin cytoskeleton of VSMCs undergoes dramatic alteration after elevation in PTM of arterioles and plays a selective and essential role in mechanosensitive myogenic constriction.


Assuntos
Citoesqueleto de Actina/fisiologia , Microscopia Confocal/métodos , Músculo Liso Vascular/fisiologia , Vasoconstrição/fisiologia , Citoesqueleto de Actina/efeitos dos fármacos , Animais , Arteríolas/fisiologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Citocalasina D/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores da Síntese de Ácido Nucleico/farmacologia , Fenilefrina/farmacologia , Polímeros , Tiazóis/farmacologia , Tiazolidinas , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia
17.
Am J Physiol Heart Circ Physiol ; 286(1): H59-67, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12946937

RESUMO

This study analyzed the regulation of alpha2-adrenoceptors (alpha2-ARs) in human vascular smooth muscle cells (VSMs). Saphenous veins and dermal arterioles or VSMs cultured from them expressed high levels of alpha2-ARs (alpha2C > alpha2A, via RNase protection assay) and responded to alpha2-AR stimulation [5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine (UK-14,304, 1 microM)] with constriction or calcium mobilization. In contrast, VSMs cultured from aorta did not express alpha2-ARs and neither cultured cells nor intact aorta responded to UK-14,304. Although alpha2-ARs (alpha2C >> alpha2A) were detected in aortas, alpha2C-ARs were localized by immunohistochemistry to VSMs of adventitial arterioles and not aortic media. In contrast with aortas, aortic arterioles constricted in response to alpha2-AR stimulation. Reporter constructs demonstrated higher activities for alpha2A- and alpha2C-AR gene promoters in arteriolar compared with aortic VSMs. In arteriolar VSMs, serum increased expression of alpha2C-AR mRNA and protein but decreased expression of alpha2A-ARs. Serum induction of alpha2C-ARs was reduced by inhibition of p38 mitogen-activated protein kinase (MAPK) with 2 microM SB-202190 or dominant-negative p38 MAPK. UK-14,304 (1 microM) caused calcium mobilization in control and serum-stimulated cells: in control VSMs, the response was inhibited by the alpha2A-AR antagonist BRL-44408 (100 nM) but not by the alpha2C-AR antagonist MK-912 (1 nM), whereas after serum stimulation, MK-912 (1 nM) but not BRL-44408 (100 nM) inhibited the response. These results demonstrate site-specific expression of alpha2-ARs in human VSMs that reflects differential activity of alpha2-AR gene promoters; namely, high expression and function in venous and arteriolar VSMs but no detectable expression or function in aortic VSMs. We found that alpha2C-ARs can be dramatically and selectively induced via a p38 MAPK-dependent pathway. Therefore, altered expression of alpha2C-ARs may contribute to pathological changes in vascular function.


Assuntos
Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Adolescente , Adulto , Arteríolas/citologia , Arteríolas/metabolismo , Fenômenos Fisiológicos Sanguíneos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Músculo Liso Vascular/citologia , Regiões Promotoras Genéticas/fisiologia , Isoformas de Proteínas/metabolismo , Receptores Adrenérgicos alfa 2/genética , Proteínas Quinases p38 Ativadas por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA