Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
BMC Genomics ; 25(1): 553, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831310

RESUMO

Development of the human pancreas requires the precise temporal control of gene expression via epigenetic mechanisms and the binding of key transcription factors. We quantified genome-wide patterns of DNA methylation in human fetal pancreatic samples from donors aged 6 to 21 post-conception weeks. We found dramatic changes in DNA methylation across pancreas development, with > 21% of sites characterized as developmental differentially methylated positions (dDMPs) including many annotated to genes associated with monogenic diabetes. An analysis of DNA methylation in postnatal pancreas tissue showed that the dramatic temporal changes in DNA methylation occurring in the developing pancreas are largely limited to the prenatal period. Significant differences in DNA methylation were observed between males and females at a number of autosomal sites, with a small proportion of sites showing sex-specific DNA methylation trajectories across pancreas development. Pancreas dDMPs were not distributed equally across the genome and were depleted in regulatory domains characterized by open chromatin and the binding of known pancreatic development transcription factors. Finally, we compared our pancreas dDMPs to previous findings from the human brain, identifying evidence for tissue-specific developmental changes in DNA methylation. This study represents the first systematic exploration of DNA methylation patterns during human fetal pancreas development and confirms the prenatal period as a time of major epigenomic plasticity.


Assuntos
Metilação de DNA , Pâncreas , Humanos , Pâncreas/metabolismo , Pâncreas/embriologia , Feminino , Masculino , Regulação da Expressão Gênica no Desenvolvimento , Ilhas de CpG , Epigênese Genética , Genoma Humano , Feto/metabolismo
2.
Diabetologia ; 65(12): 2108-2120, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35953727

RESUMO

AIMS/HYPOTHESIS: Enterovirus (EV) infection of pancreatic islet cells is one possible factor contributing to type 1 diabetes development. We have reported the presence of EV genome by PCR and of EV proteins by immunohistochemistry in pancreatic sections. Here we explore multiple human virus species in the Diabetes Virus Detection (DiViD) study cases using innovative methods, including virus passage in cell cultures. METHODS: Six recent-onset type 1 diabetes patients (age 24-35) were included in the DiViD study. Minimal pancreatic tail resection was performed under sterile conditions. Eleven live cases (age 43-83) of pancreatic carcinoma without diabetes served as control cases. In the present study, we used EV detection methods that combine virus growth in cell culture, gene amplification and detection of virus-coded proteins by immunofluorescence. Pancreas homogenates in cell culture medium were incubated with EV-susceptible cell lines for 3 days. Two to three blind passages were performed. DNA and RNA were extracted from both pancreas tissue and cell cultures. Real-time PCR was used for detecting 20 different viral agents other than EVs (six herpesviruses, human polyomavirus [BK virus and JC virus], parvovirus B19, hepatitis B virus, hepatitis C virus, hepatitis A virus, mumps, rubella, influenza A/B, parainfluenza 1-4, respiratory syncytial virus, astrovirus, norovirus, rotavirus). EV genomes were detected by endpoint PCR using five primer pairs targeting the partially conserved 5' untranslated region genome region of the A, B, C and D species. Amplicons were sequenced. The expression of EV capsid proteins was evaluated in cultured cells using a panel of EV antibodies. RESULTS: Samples from six of six individuals with type 1 diabetes (cases) and two of 11 individuals without diabetes (control cases) contained EV genomes (p<0.05). In contrast, genomes of 20 human viruses other than EVs could be detected only once in an individual with diabetes (Epstein-Barr virus) and once in an individual without diabetes (parvovirus B19). EV detection was confirmed by immunofluorescence of cultured cells incubated with pancreatic extracts: viral antigens were expressed in the cytoplasm of approximately 1% of cells. Notably, infection could be transmitted from EV-positive cell cultures to uninfected cell cultures using supernatants filtered through 100 nm membranes, indicating that infectious agents of less than 100 nm were present in pancreases. Due to the slow progression of infection in EV-carrying cell cultures, cytopathic effects were not observed by standard microscopy but were recognised by measuring cell viability. Sequences of 5' untranslated region amplicons were compatible with EVs of the B, A and C species. Compared with control cell cultures exposed to EV-negative pancreatic extracts, EV-carrying cell cultures produced significantly higher levels of IL-6, IL-8 and monocyte chemoattractant protein-1 (MCP1). CONCLUSIONS/INTERPRETATION: Sensitive assays confirm that the pancreases of all DiViD cases contain EVs but no other viruses. Analogous EV strains have been found in pancreases of two of 11 individuals without diabetes. The detected EV strains can be passaged in series from one cell culture to another in the form of poorly replicating live viruses encoding antigenic proteins recognised by multiple EV-specific antibodies. Thus, the early phase of type 1 diabetes is associated with a low-grade infection by EVs, but not by other viral agents.


Assuntos
Diabetes Mellitus Tipo 1 , Infecções por Enterovirus , Enterovirus , Infecções por Vírus Epstein-Barr , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Diabetes Mellitus Tipo 1/patologia , Regiões 5' não Traduzidas , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/patologia , Herpesvirus Humano 4/genética , Enterovirus/genética , Pâncreas/patologia , Reação em Cadeia da Polimerase em Tempo Real , Antígenos Virais , Extratos Pancreáticos
3.
Diabetes ; 71(7): 1591-1596, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35499624

RESUMO

C-peptide declines in type 1 diabetes, although many long-duration patients retain low, but detectable levels. Histological analyses confirm that ß-cells can remain following type 1 diabetes onset. We explored the trends observed in C-peptide decline in the UK Genetic Resource Investigating Diabetes (UK GRID) cohort (N = 4,079), with ß-cell loss in pancreas donors from the network for Pancreatic Organ donors with Diabetes (nPOD) biobank and the Exeter Archival Diabetes Biobank (EADB) (combined N = 235), stratified by recently reported age at diagnosis endotypes (<7, 7-12, ≥13 years) across increasing diabetes durations. The proportion of individuals with detectable C-peptide declined beyond the first year after diagnosis, but this was most marked in the youngest age group (<1-year duration: age <7 years: 18 of 20 [90%], 7-12 years: 107 of 110 [97%], ≥13 years: 58 of 61 [95%] vs. 1-5 years postdiagnosis: <7 years: 172 of 522 [33%], 7-12 years: 604 of 995 [61%], ≥13 years: 225 of 289 [78%]). A similar profile was observed in ß-cell loss, with those diagnosed at younger ages experiencing more rapid loss of islets containing insulin-positive (insulin+) ß-cells <1 year postdiagnosis: age <7 years: 23 of 26 (88%), 7-12 years: 32 of 33 (97%), ≥13 years: 22 of 25 (88%) vs. 1-5 years postdiagnosis: <7 years: 1 of 12 (8.3%), 7-12 years: 7 of 13 (54%), ≥13 years: 7 of 8 (88%). These data should be considered in the planning and interpretation of intervention trials designed to promote ß-cell retention and function.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Adolescente , Peptídeo C , Criança , Diabetes Mellitus Tipo 1/genética , Humanos , Lactente , Células Secretoras de Insulina/patologia , Pâncreas/patologia , Doadores de Tecidos
4.
Nat Genet ; 54(11): 1615-1620, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36333503

RESUMO

Gene expression is tightly regulated, with many genes exhibiting cell-specific silencing when their protein product would disrupt normal cellular function1. This silencing is largely controlled by non-coding elements, and their disruption might cause human disease2. We performed gene-agnostic screening of the non-coding regions to discover new molecular causes of congenital hyperinsulinism. This identified 14 non-coding de novo variants affecting a 42-bp conserved region encompassed by a regulatory element in intron 2 of the hexokinase 1 gene (HK1). HK1 is widely expressed across all tissues except in the liver and pancreatic beta cells and is thus termed a 'disallowed gene' in these specific tissues. We demonstrated that the variants result in a loss of repression of HK1 in pancreatic beta cells, thereby causing insulin secretion and congenital hyperinsulinism. Using epigenomic data accessed from public repositories, we demonstrated that these variants reside within a regulatory region that we determine to be critical for cell-specific silencing. Importantly, this has revealed a disease mechanism for non-coding variants that cause inappropriate expression of a disallowed gene.


Assuntos
Hiperinsulinismo Congênito , Células Secretoras de Insulina , Humanos , Hexoquinase/genética , Hexoquinase/metabolismo , Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética
5.
Microbiology (Reading) ; 144 ( Pt 3): 727-738, 1998 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9534242

RESUMO

In Streptomyces coelicolor A3(2), bldA mutants that lack the tRNA for the rare leucine codon UUA fail to make the red undecylprodigiosin antibiotic complex. To find out why, red-pigmented while bald (Pwb) derivatives of a bldA mutant were isolated. Using a cloning strategy that allowed for (and demonstrated) dominance of the mutations, they were localized to the red gene cluster. By using insert-mediated integration of a phi C31 phage-based vector, one of the Pwb mutations was more precisely located between red structural genes to a segment of approximately 1 kb about 4 kb from the known pathway-specific regulatory gene redD. The segment contained most of an ORF (redZ) encoding a protein (RedZ) with end-to-end similarity to response regulators of diverse function from a variety of bacteria. Remarkably, in RedZ hydrophobic residues replace nearly all of the charged residues that usually make up the phosphorylation pocket present in typical response regulators, including the aspartic acid residue that is normally phosphorylated by a cognate sensory protein kinase. A single TTA codon in redZ provided a potential explanation for the bldA-dependence of undecylprodigiosin synthesis. This codon was unchanged in three Pwb mutants, but further analysis of one of the mutants revealed a potential up-promoter mutation. It seems possible that a combination of low-level natural translation of the UUA codon by a charged non-cognate tRNA, coupled with increased transcription of redZ in the Pwb mutant allows the accumulation of a threshold level of the RedD protein.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Streptomyces/genética , Transativadores/genética , Sequência de Aminoácidos , Sequência de Bases , Códon , Genes Bacterianos , Vetores Genéticos , Modelos Genéticos , Dados de Sequência Molecular , Mutagênese Insercional , Fosforilação , Filogenia , Prodigiosina/análogos & derivados , Prodigiosina/biossíntese , Regiões Promotoras Genéticas , RNA Bacteriano , RNA de Transferência de Leucina/genética , Análise de Sequência de DNA , Streptomyces/crescimento & desenvolvimento , Streptomyces/metabolismo , Transativadores/química , Transativadores/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA